Porting a Window Manager from Xlib to
XCB

Arnaud Fontaine (08090091)

16 May 2008

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover

Texts and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Contents

List of figures

List of listings

Introduction

1 Backgrounds and Motivations

2 X Window System (X11)

2.1 Introduction
2.2 History e e e
23 X Window Protocol
23.1 Introduction.
2.3.2 Protocoloverview
2.3.3 Identifiers of resources
234 AtOMS e e
235 Windows e
236 PIXmaps. e e e
237 EBvents. e e
2.3.8 Keyboardandpointer. Lo
239 EXtensions

2.4 X protocol client libraries

241 Xlib . ..o
24.1.1 Introduction
2.4.1.2 Datatypes and functions
2413 Pros
2414 Cons e
2415 Example oo oo

242 XCB ..
2421 Introduction

ii

00 N 9 N O &

2.4.2.2 Datatypes and functions

2423 xcb-utillibrary,
2424 Pros ...
2425 Cons
2426 Example
2.4.3 Xlib/XCB round-trip performance comparison

3 Implementation

3.1 Introduction
3.2 Encountered iSSUES e e e
3.3 Aboutporting
34 Existingdesign
35 Testingo L
3.6 Debuggingtools
3.6.1 Xephyr
362 GDB
3.7 RemainingiSsues o v it e e e
3.8 Patches
3.8.1 Awesome e e
3.8.2 xcb-utillibrary
Conclusion

A Additional code listings

A.1 Xlib code of example program #1
A.2 XCB code of example program #1
A.3 Performance comparison between Xliband XCB
B Patches
B.1 Awesomepatches
B.1.1 Replace Pango by Xft to handle client-side fonts
B.1.2 Fix incorrect Xlib functioncall
B.1.3 FiX PATH_MAXISSUE o v v v v i i it
B.2 xcb-utilpatches
B.2.1 Addnon-blockingeventsloop
B.2.2 Fix invalid data returned by ICCCM hints functions
B.2.3 Add non-blocking eventsloop

GNU Free Documentation License

24
24
24
24
26
26
26
26
27
28
28
28
29

30

11

vi

ix
X
X
Xviii
XiX
XX1V
XX1V
XXV

XXiX

xxxii

List of figures

1.1
1.2

2.1
2.2
23
24

3.1

Screenshot of Awesomeo oo 3

Screenshot of Awesome status bar made of widgets

Two clients using the same display at the same time with different protocols 9

Interactions between a client and the server 11
Generated KeyPress event (source: Wikipedia) 14
Default X keyboard layout 16

Debugging Awesome using Xephyr (top window) and GDB (bottom win-
dow) . . . e 27

List of listings

1.1
1.2
2.1
2.2
2.3

24
2.5

3.1

3.2
Al
A2
A3
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

Show the third tag of the first scren using command line interface . . . 3
Shell script which displays the current system uptime in the status bar . 4
Windows hierarchy of urxvt X terminal 12
Window properties defined by urxvt X terminal 13
Example of generated KeyPress and Expose events when creating a win-

dowandtyping 1s o i i e e e e e e e e e e 15
example program #1 outputo 20
Output of program given in sectionA.3 23
Porting code from Xlibto XCB#1 25
Porting code from Xlibto XCB#2 25
Xlib code of example program #1, i
XCB code of example program #1 ii
Performance comparison between Xlib and XCB vi
[PATCH] Replace Pango by xft to handle client-side fonts #1 X
[PATCH] Replace Pango by xft to handle client-side fonts #2 Xvi
[PATCH] Fix incorrect Xlib XGet TransientForHint () call Xviii
[PATCH] Get rid of PATH_MAX#I« v v v v v ie .. X1X
[PATCH] Get rid of PATH_MAX#2 v ... XXI1i
[PATCH] Add non-blocking events loop XX1v
[PATCH] Fix invalid data returned by ICCCM hints functions XXV

[PATCH] Add non-blocking events loop XX1X

i

Introduction

Chapter 1

Backgrounds and Motivations

Backgrounds

Awesome' is a fast and lightweight Window Manager? initiated by Julien Danjou. It
is in fact based on a fork from DWN? as its authors set terms on its development like
that its source code is intended to never exceed 2000 physical lines of code and it is
customized through editing its source code.

Although the project source code was publicly released in September, it has grown
quickly to the version 2.2 released on 23th March. The current development version is
2.3.

Awesome supports multihead (e.g. multiple screens) and can be easily customized
through a configuration file. It groups windows by fags, which may be compared to
desktops existing on other window manager or desktop manager, but actually differs in
that a window can be fagged with one or multiple tags, this allows to display windows
from different tags to be displayed on the current one for instance. Each tag has its own
layout defining how the windows are managed on the fly, thus the user can adjust the
layout depending on the task he wants to accomplish. Windows and tags management
can be performed only with the keyboard, ensuring that no mouse is really needed. The
following layouts are currently available:

o floating: the windows can be resized and moved freely on the current tag like tra-
ditional windows managers do. Dialog windows are always displayed as floating
independently of the layout set.

e maximized: the windows are resized to fill fully the screen.

e tiled: this layout is one of the main specificities of Awesome. The windows are
managed in a master area, which contains windows the user wants to focus his
attention on, and a stacking area where lies all other windows. It assures that
no space is wasted on the screen because there is no gaps nor overlaps between

'http://awesome.naquadah.org
%See glossary
3http://www.suckless.org/wiki/dwm

2]dwm code rewr

Figure 1.1: Screenshot of Awesome

windows in a given tag. The master area is by default on the right frame, but
Awesome also defined tileleft, tilebottom and tiletop layout depending
on the master area position. This layout also allows to specify the number of rows and
columns of the master area. The figure 1.1 shows windows managed thanks to the default
tile layout with only one row and column set on the master area.

e spiral: the windows are getting smaller towards the right bottom corner of the screen.

o dwindle: the windows are getting smaller in a fibonacci spiral.

A third-party program, awesome—-client, permits to communicate with Awesome pro-
cess through a socket thanks to the command line interface (or CLI) described in a reference
document. Awesome main process receives the command sent by the user or a script and then
call the appropriate functions. For instance the user may type the following command to view
the third tag of the first screen using command line interface as shown on listing 1.1.

$ echo 0 tag_view 3 | awesome—client

Listing 1.1: Show the third tag of the first scren using command line interface

Awesome also includes the notion of widgets which allows to display various information in
a status bar (figure 1.2) in a flexible way. Indeed, an user can defined his own widget or use the
following pre-defined widget:

o textbox;

o tasklist;

e iconbox;

e progressbar;

e graph;

e layoutinfo;

o taglist;

e focusicon;

] ahout - awesome windaow manager - ELinks

Figure 1.2: Screenshot of Awesome status bar made of widgets

The figure 1.2 shows usage of the following widgets (from left to right): raglist, layoutinfo,
iconbox, tasklist, textbox, graph, progressbar. .. The user gets the wanted informations using a
third party program which calls awesome—client in order to populate the informations to the
widgets or directly communicate with the socket.

For instance, if the user wants to display the system uptime in the status bar, he firstly has
to add a textbox widget in the configuration file. Secondly, it pipes the output of upt ime Unix
command (an example shell script is provided by the listing 1.2) to awesome-client respon-
sible of updating the previously declared widget by communicating with awe some process. The
listing shows a shell script which displays into a widget named uptime the current system uptime.

#!/bin/sh

while true; do
Exit when awesome—client returns an error, for instance when
awesome is not running anymore...
(echo "0O_widget_tell _ uptime_$(uptime)" | awesome—client > /dev/
null 2>&1) |l exit 1
done

Listing 1.2: Shell script which displays the current system uptime in the status bar

Motivations

Before switching to Awesome Window Manager last september, I was using lon3 pre-released
versions on DEBIAN GNU/LINUX . However, in May 2007, the lead developer of Ion3 project,
previously licensed under LGPL free software license, decided to add a non-free clause to the
existing license making it non-free. Basically, packages provided by GNU/LINUX distributions
can not be given names that can not be associated with the "lon" project, or be qualified as "lon
soup”, and still be considerable as customised versions of this software*. Consequently, after
looking for a decent replacement of a Window Manager allowing keyboard management of win-
dows like Ion3 does, I decided to give a try to a quite recent and promising Window Manager:
Awesome. Then, I moved to Awesome because it suits particularly my needs.

I have always been interested in understanding X Window System concepts and applies them
by participating in Ion3 development but I was a bit reluctant to learn Lua, based programming
language of Ion3. As Awesome is entirely written in C programming language, when I switched
to Awesome, I submitted some short patches fixing various bugs I had. Then, I decided to focus
my year project on being familiar with Awesome code and adding features afterwards. In addi-
tion, Awesome development moves quite fast thanks to its main and original developer, Julien
Danjou who happily applies patches sent to him, ensuring that my work is useful. These are
why I thought this project could have been the ideal opportunity to add features and also to be
involved in its development.

Julien Danjou suggested some ideas of features I could work on. Porting Awesome from
Xlib to more recent XCB X client library specially catched my attention among other features I
could have implemented. Actually, XCB provides a cleaner and more consistent API than Xlib
as well as improving the performance.

4See http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=422527#10 for further details about this
issue

Chapter 2

X Window System (X11)

2.1 Introduction

The X Window System (commonly X11 or X) is a standard and complete network-transparent
graphical windowing system based on a client/server model built on top of an operating system
kernel.

X provides the basic toolkit and protocol used for building GUI environments and toolKkits.
X is referred as basic because it allows to draw and move window on one or more screens,
and interact with input/output devices used in a graphical context (like mouse and keyboard for
example), but does not provide the user interface. Actually, X was designed to provide low-level
mechanisms for managing the graphic display.

Unlike traditional client/server applications, the server runs on the local machines and owns
the input devices, allowing the remote or local client programs to draw or display fonts on the
display by sending requests to the it. Usually, there is client, known as a window manager, which
interact with the X server in order to manage the windows on a screen.

2.2 History

The X Window System is based on an early window system, namely W WINDOW SYSTEM,
developed for the V OPERATING SYSTEM. It is originated from the lack of existing alternatives
of an platform-independant and license-available display system and kept only some concepts
and the name from W. It was originally developed at MIT in 1984 by Jim Gettys and Robert
W. Scheifler and renamed to X when asynchronous protocol replaced the synchronous protocol
from W.

After several releases, X11 was released in 1987 along with the current protocol used nowa-
days. A meeting with several vendors pointed out that the development should be handled by a
third neutral party following commercial and educational interests instead of the MIT in order
to avoid forks of the project. From this idea originated a non-profit vendor group some months
later, the MIT X Consortium leaded by Robert W. Scheifler.

In 1992, X11, originated from the first port of X Window Server for IBM PC compatibles,
was donated to the MIT X Consortium. X11 evolved over time from a port for IBM PC compat-

ibles to the leading and most popular implementation of X server.

In 1996, the X Consortium was dissolved and passed the stewardship of X in 1997 to the
Open Group which supervised the release of X11R6.4. Then the OPEN GROUP formed X.Org
and released X11R6.5.1 but the innovations was taking place only in X11. That’s why the latter
project was encouraged to join X.Org because some hardware companies were also interested in
using this project with GNU/LINUX and by its popularity.

In 2004, many dissensions within the X11 leaded to the release of X11 4.4 under a more
restricted license which didn’t suit project relying on it because it was viewed as not compatible
with GNU GENERAL PUBLIC LICENSE (GPL). In the meantime, various people from X.Org
and FREEDESKTOP.ORG founded the X.Org foundation leaded to radical changes in X develop-
ment because the X.Org was led by vendor organization whereas the X.Org foundation is led by
software developers. In April 2004, this foundation released X11R6.7 based on X11 4.4RC2
(before the license modification) and X11R6.6.

Nowadays, the most popular X implementation is the one from the X.Org foundation based
on X11R7.X version which is a modular release of previous monolithic version. It is available
on GNU/LINUX and many Unix-like operating systems.

2.3 X Window Protocol

2.3.1 Introduction

As explained in section 2.1, the X Window System is based on a client/server model which,
at a first glance, may appear backward compared to the traditional client/server model.

Indeed, the server provides a display server to graphical applications, therefore it manages
the output devices like screens and input devices, like keyboard and mouse for example.

All other applications are considered as clients because they use the service provided by
the X Window Server. Usually, there is at least one client started by user that has authority for
the layout of windows on the display, namely a WINDOW MANAGER (also known as WM). It
usually handles the following kind of operations common to the end-user nowadays:

e move windows around the screens;

e change window size;

e switch to another workspace;

e provide window decorations like titlebar;

A given client and the server communicate asynchronously via the X Window Protocol. It

specifies that it is important to keep in mind that the protocol is intended to provide mechanism,
not policy, thus this protocol does not specify:

e Inter-clients interactions to transfer datas between windows (selections, cut and paste and
drag and drop are some common examples intended by end-user when using a graphical

interface) but also between the window manager and the windows it manages. These
interactions are however described in specifications like ICCCM!, EWMH? and NetWM?>.

e Common widgets like buttons, menus, textbox...but toolkits can be built on top of this
protocol in order to provide these features.

These interactions are defined in separate specifications like ICCCM, EWMH and NetWM.

2.3.2 Protocol overview

The X Window Protocol provides network transparency, which means that the server and a
client can both run on the same host or on different ones. It allows to secure communications
by tuneling the connection over an encrypted channel without including encryption within the
protocol, thus make the protocol specification simpler. For instance, it is possible for clients to
communicate with the server over a SSH tunnel.

X requires a reliable and bidirectional stream protocol like DECNET (VMS operating sys-
tem) or TCP/IP, although the usage of the former is deprecated nowadays because it provides
a far less address space and does not have the advanced features provided by the latter protocol
suite.

When running both of server and clients on the same host, TCP/IP leads to a huge overhead
mainly caused by packet processing, that’s why X can also be used over Unix domain proto-
col. This protocol is based on inter-process communication (IPC) and thus allows efficient and
bidirectional communication between the server and the clients. The figure 2.1 shows a possible
situation where two client applications share the same display over different protocols. Although
this figure only shows a situation with only one X server process, a host may start several X
server at the same time from different terminals (TTY in GNU/LINUX), this way it allows sev-
eral displays to be used.

Let is assumed that n is the display number starting from 0, when a X server is started, it
creates a TCP end-point by opening a port (by default 6000 + n) or can also create an Unix
domain socket (generally located in /tmp/ .X11-unix/Xn) or both depending on the server
settings. A client can now connect on this X server by the following steps:

1. The client sends the first packet in order to initiate the connection to the server and must
send the following datas:

e Byte order (endianess).
e Protocol version.

e Authorization mechanism.

This is not described in the X Window Protocol and it is ignored if not supported.
2. The server may returned back to the client the following status:

e Failure.

ISee glossary
2See glossary
3See glossary

Client

Application
A
|
|
! HOST B
essssssssrssnmssnmn s nrnnnnn 1................................‘
Interaction! TCP/IP
|
: |
I Display
Client Interaction) +
Application i | Window
Window
Unix domain socket i
X Server 1—
HOST A Keyboard Mouse Screen

Figure 2.1: Two clients using the same display at the same time with different protocols

® Success.
e Authenticate.

In this case, a reason is returned depending on authorization protocol in use and
further authentication negotiation is required before accepting or refusing the con-

nection.
3. If the returned status is Success and the connection has been successfully established,

then the server sends back to the client informations needed for interactions between them
(these informations will be described later).

Once the client receives these informations, several types of messages might be exchanged:

e Request (varying length).

The client sends a request to the server identified by a sequence number starting from 0.

9

e Reply (varying length).

The server may send a reply (not all request generates a reply) which contains the least
significant 16 bits of the request sequence number.

e Error (32 bytes long).

It includes a 8 bit error code and, like reply, contains the least significant 16 bits of the
failed request.

e Event (32 bytes long).

It includes a 8 bit type code (further details about events is given in the next section).

A client and a server may exchange a lot of datas depending of the client application design.
Figure 2.2 shows example of interactions between the server and the clients when performing
no authentication and considering that the connection status is Success. After establishing the
connection, the client sends to the X server queue a request to create a window which does not
generate a reply, then ask for attributes and geometry of the previously created window. All these
requests may generate errors which might not be sent immediately because events are queued.

2.3.3 Identifiers of resources

Datas like windows, pixmaps and graphic context* are resources stored server-side and de-
stroy by default when the server is reset. When the client requests to create a new resource, the
following steps are executed:

1. the client asks the current identifier (XID) range to the server and commonly picks the
next sequential number;

2. the server allocates the resource and associates it to the given XID;

3. the client can now perform operations on this resource (like drawing) by specifying this
identifier;

This mechanism avoids copy of the resource between the server and the client which re-
quested the resource allocation and also enabled resources sharing among clients on the same X
server, consequently resulting in a more efficient use of the network.

The figure 2.1 shows that the root window created during X server startup has been associated
to identifier 0x69 and urxvt window is associated to identifier 0x2600009. Another client
on the same X server could draw on the window by giving its identifier.

2.3.4 Atoms

An Atom is a an unique 32 bits integer identifier assigned by the server (as opposed to a
resource identifier explained in section 2.3.3) used often in inter-clients communications. As the
identifier has a fixed and short length, it is consequently faster to process on a network. The
string is stored in the server and referenced as Atom name.

4See glossary

10

Client Server

Connection initialization

-

Connection established, send
informations about the display back to the client

CreateWindow request
(sequence number = 0)

GetWindowAttributes request
(sequence number = 1)

KeyPress event

GetGeometry request
(sequence number = 2)

GetWindowattributes reply
(sequence number = 1)

GetGeometry reply
(sequence number = 2)

Figure 2.2: Interactions between a client and the server

A client can request allocation of an Atom by sending the intended name in a InternAtom
request, the server replies by sending its identifier. It is automatically created if it does not already
exist. The opposite operation is achieved by sending Get At omName request.

Contrary to the default behavior of a resource identifier, an Atom is kept even when the
server is reset. In order to reduce network usage, most common Atoms needed by applications
are already allocated in the server (like WM_CLASS and WM_NAME).

11

2.3.5 Windows

In the X Window System, the windows are hierarchically ordered as a tree where the root
window is the parent of all other windows (or more precisely subwindows). This special window
is generally as large as the physical screen and is situated behind all its children.

When the client sends a request to create a window (namely CreateWindow in the X
Window Protocol) or more precisely a subwindow of an existing window, it needs to specify
(beside other informations described in later sections of this chapter) the following:

o identifier of its parent;

A top-level window (e.g. a child of the root window) is created by setting the parent
window to the identifier of the root window. But as other screen informations, the identi-
fiers of the root window is sent by the server when the connection has been successfully
established”.

e class of the window;

— InputOnly;
Specify that the window can receive events but can not be used as a source or desti-
nation for graphics requests.

— InputOutput;
Specify that the window can receive events and can be used for drawing.

A client can request window destruction by sending Dest royWindow request.

The listing 2.1 shows an example of output when running xwininfo —-tree command
which allows to display the tree based on the window pointed with the mouse. Thus, it indicates
that urxvt creates only one top-level window (width: 694 pixels, height: 1026 pixels, absolute
z coordinate is at pixel 703, absolute y coordinate is at pixel 21).

"

xwininfo: Window id: 0x2600007 "arnau@maggie: -~

Root window id: 0x69 (the root window) (has no name)
Parent window id: 0x69 (the root window) (has no name)
1 child:
0x2600009 (has no name): () 694x1026+2+2 +703+21

Listing 2.1: Windows hierarchy of urxvt X terminal

A window possesses attributes (border, cursor, accepted events. . .) stored server-side. They
can be fetched and set respectively by sending GetWindowAttributes and ChangeWindowAttributes
request. Window decorations are accomplished by the Window Manager, not the client itself.

A window also possesses properties allowing for example to inform about the behavior it
desires to the Window Manager (figure 2.2 show some common properties). A property is stored
server-side as an Atom and thus characterized by its name, type and value and can be fetched

3Second step shown in figure 2.1

12

20

22

or set by sending respectively GetWindowProperty and ChangeWindowProperty. By
design, the X Window Protocol does not describe these properties, but however provides the
necessary request and reply format to manage them. For instance, the NetWM specifies that the
window title is stored in _NET_WM_NAME (an Atom) property (UTF-8 string).

WM_STATE(WM_STATE) :
window state: Normal
icon window: 0x0
_AWESOME_PROPERTIES (STRING) = "100000000"
_NET_WM_PID (CARDINAL) = 12313
WM_PROTOCOLS(ATOM) : protocols WM _DELETE WINDOW, _NET_WM_PING
WM_LOCALE NAME(STRING) = "fr_FR .UTF-8"
WM_CLASS(STRING) = "urxvt", "URxvt"
WM_HINTS (WM_HINTS) :
Client accepts input or input focus: True
Initial state is Normal State.
window id # of group leader: 0x2600007
WM_NORMAL, HINTS (WM_SIZE_HINTS) :
program specified minimum size: 11 by 18
program specified resize increment: 7 by 14
program specified base size: 4 by 4
window gravity: NorthWest
WM_CLIENT MACHINE (STRING) = "maggie"
WM COMMAND(STRING) = { "urxvt" }
_NET_WM_ICON_NAME(UTF8_STRING) = 0x61, 0x72, Ox6e, 0x61, 0x75, 0x40, O
x6d, 0x61, 0x67, 0x67, 0x69, 0x65, 0x3a, 0x20, Ox7e
WML_ICON NAME(STRING) = "arnau@maggie: ~"
NET WM _NAME(UTF8_STRING) = 0x61, 0x72, Ox6e, 0x61, 0x75, 0x40, 0x6d,
0x61, 0x67, 0x67, 0x69, 0x65, 0x3a, 0x20, O0x7e
WM NAME(STRING) = "arnau@maggie: ~"

Listing 2.2: Window properties defined by urxvt X terminal

It is also worth noting that a window is considered as a drawable like Pixmap explained later
and the window content is not guaranteed to be preserved. The X server provides two methods
to make sure that the window content is preserved:

e using backing-store® configurable by sending ConfigureWindow request;

e by generating an Expose event notifying that the window content has to be drawn again;

The second method is the most widely used because the window content is generally man-
aged by the Window Manager. Indeed, most X server implementations drops backing-store if

memory becomes limited (backing-store may consum a lot of memory) but also because some X
server implementation doesn’t provide backing-store at all.

bSee glossary

13

2.3.6 Pixmaps

A Pixmap is just a tree dimensional array of bits used for drawing and is therefore considered
as a drawable (like a window). A Pixmap is an off-screen resource which can be partially or
completely transferred to a window and vice-versa, thus allowing double-buffering’. It is often
used as a picture buffer or a background pattern. In the X Window Protocol, a client requests
allocation of a Pixmap using CreatePixmap and freeing by FreePixmap.

2.3.7 Events

According to the X Window Protocol specification, clients are informed of informations by
means of events and can be generated from input/output devices owned by the X server, or also
as side effects of clients requests (for instance by SendEvent request which allows a client
to send a request to another client). As described in section 2.3.2, events is one of the four
specific messages exchanged between the server and the clients (see figure 2.2 for an example
of interactions involving a KeyPress event described below). Each event message usually
possesses its own format.

An event is sent relatively to a window. In order to receive events, any clients has to ex-
plicitely stated what events it is interested in for a given window (figure 2.3 provides an example
of KeyPress event). This can be achieved by specifying a mask when creating the window
by sending CreateWindow request or at anytime thanks to ChangeWindowAttributes
request.

¥ server

attributes of window 3209

|
event: keypress on = event mask - client1

window 3209

~, |
____.-“-..H-MH

~ client 2

=| event mask

= eyent mask | client 3

Pt

S

width | | height

(other attributes)

Figure 2.3: Generated KeyPress event (source: Wikipedia)

For instance, a client may set EventMask to KeyPress and Expose allowing a window

See glossary

14

to received these events from the server when a key a button has been pressed or when the window
content is invalid meaning that the window has to be redrawn (as explained in section 2.3.5). The
listing 2.3 shows events sent when a client application creates a new window and then presses
1s in the situation described above.

Expose event, serial 14, synthetic NO, window 0x2200007,
(0,0), width 1398, height 2, count 3

KeyPress event, serial 14, synthetic NO, window 0x2200007,
root 0x69, subw 0x2200009, time 3337013, (212,386), root:(213,405)
state 0x0, keycode 46 (keysym Ox6c, 1), same_screen YES,
XLookupString gives 1 bytes: (6¢c) "1"
XmbLookupString gives 1 bytes: (6¢c) "1"
XFilterEvent returns: False

KeyPress event, serial 17, synthetic NO, window 0x2200007,
root 0x69, subw 0x2200009, time 3337132, (212,386), root:(213,405)

state 0x0, keycode 39 (keysym 0x73, s), same_screen YES,
XLookupString gives 1 bytes: (73) "s"
XmbLookupString gives 1 bytes: (73) "s"

XFilterEvent returns: False

Listing 2.3: Example of generated KeyPress and Expose events when creating a window
and typing 1s

In the instance where no clients has stated its interest in a specific event, the server may also
send the event to ancestor windows if it is not specified in the do-not-propagate-mask.

2.3.8 Keyboard and pointer

Each physical or logical keyboard key is associated with an unique key code (known as
KeyCode in the X Window Protocol specification). It may be associated to at least one character
or special key, names a KeySym, selected thanks to special keys called modifiers. In most
common case, the following modifiers are available on the end-user keyboard (figure 2.4 shows
the default keyboard layout for PCSs):

Shift;

Control;

e Meta;

Compose;

CapsLock;

NumLock;

15

F1 | F2| Fa| Fa] Fs|Fe | #7] 7| Fa]FioF|Fiz] Backspace |
ZHHHHHHHBRHHEMEN A
TahG'IH'E_I—RT"r'UIOF_I_ nm?msiﬁm
cantol | A | s |0 |efa|m]afk]i]:]?] meum]t, | B
S [T [T T el i
o] _I_lﬁl_l_u_l_l“i b e

Figure 2.4: Default X keyboard layout

The association table between KeyCodes and Key Syms are maintained server-side making
it available and modifiable to all clients. It allows the end-user to use a different keyboard layout
than the default shown in figure 2.4.

Concerning pointer buttons, the X server also uses a modifier mapping which may only be
permuted if the user desired it.

Within a window, when the key state changes or the pointer moves, the following self-
explanatory events messages may be generated by the server:

e keyboard related events:

— KeyPress;

— KeyRelease;
e pointer related events:

— ButtonPress;
— ButtonRelease;

— MotionNotify;

All of these event messages shares the same format whose fields are the root window, source
window and coordinates available for both. Depending on the source of the event, it also contains
a detail field holding the key code or the button and a state field storing the current keyboard
modifiers or mouse buttons. The server does not convert a KeyCodes associated with modifiers
KeySyms in a KeyCodes or vice-versa, it is actually performed by the client.

For a given window, a client can grab or ungrab (e.g. consequently all events will respectively
be sent or not to this client) the following:

akey ((Un)GrabKey request);

the pointer ((Un)GrabPointer request);

the keyboard ((Un)GrabKeyboard request);

a button ((Un)GrabButton request);

16

2.3.9 Extensions

The X server is intended to be kept simple, so defining new request, events or errors packet
formats can be achieved through extensions to the protocol and then added as a separate library
from the server. As many extensions exist, the list of extensions given in the following table is
not exhaustive, it aims to describe only the extensions needed for later explanations:

XRender | provide several rendering operations and alpha blending®
RandR allow desktop resizing and display rotating on the fly
Xinerama | allow to split the desktop accross multiple monitors

Xkb enhances keyboard handling and control

17

2.4 X protocol client libraries

A client program can interact with the X server using a X client library implementing the X
Window Protocol, like Xlib and XCB. Generally, when designing a typical graphical application,
most programmers rely on a libary on top of a X protocol client library like GTK or QT. Indeed,
they expect the library to provide a widgets® toolkit, like labels, buttons or menus for example,
without writing this code by hand nor understanding a quite complex communication protocol
like X Window Protocol. However, writing a Window Manager involves X Window Protocol
access for controlling placement and appearance of windows within a screen.

2.4.1 Xlib
2.4.1.1 Introduction

The Xlib is a protocol X client library in the started in 1985 and currently supported by any
operating systems relying on the X Window System, mostly Unix-like operating systems. This
library is a free software (under the terms of the MIT license) based on a monolithic architecture
providing ICCCM-compliant standard properties and programming interfaces. Currently, almost
every widget toolkits are built on top of this library to communicate with the X server.

2.4.1.2 Data types and functions

As most resources are maintained by the X server and accessible for clients through identi-
fiers (described in section 2.3.3), the Xlib provides types for these identifiers, which are actually
just platform-independent 32-bits integers. Beside these primitive types, the data types and func-
tions in the Xlib library can be roughly grouped as:

Operations on the connection An opaque Display structure represents a connection to
the X server intialized when calling XOpenDisplay () and destroyed by XCloseDisplay ().
This private structure holds notably the following datas:

e a file handle to the network socket used for communication between the server and the
client. This file can be accessed at any time through ConnectionNumber () function.

o client-side datas as described in next paragraph.

e Display informations like the number of screens available on the X server, the identifier
of the root window used to create top-level windows for example (as described in section
2.3.5).

Clients-side datas and operations In Xlib, each event generated from the server corre-
sponds to a structure containing its specific informations (for instance XKeyEvent representing
both KeyPress and KeyRelease events as described in the X Window Protocol). In addition,
it specifies an XEvent union holding an event structure specified by the type field.

9See glossary

18

It is worth noticing that the Xlib does not usually send requests immediately but store them
client-side in an specific buffer, commonly called the output buffer. These stored requests are
usually executed asynchronously on the X server when any function returning a value or waiting
for input is called (as a side-effect the buffer is flushed completely). The client may stated its
interests in protocol errors (generated from a request by the server) by setting an appropriate
handler corresponding to the error type. The error is sent as soon as the X server detect reports
protocol errors.

Xlib provides specific inspection and management operations on the event queue it maintains
client-side:

e XFlush (): flushes the request output buffer.

e XSync (): flushes the request output buffer and waits until the server has processed all
the sent requests.

e XNextEvent (): copies the first event in the queue to a specified XEvent structure and
then removes it. Otherwise, if the event queue is empty, it flushes the request output buffer
and block until an event is received.

e XPending () : returns the number of events in the events queue.

e XCheckMaskEvent (): searches the queue for the first event which matches the spec-
ified event-mask. If an event matches, then it is copied to the XEvent structure given as
a parameter before removing it from the queue and returning True. Otherwise, it returns
False.

e XMaskEvent (): searches the queue for any events which matches the specified event-
mask. It returns a list of matching events if any, otherwise it flushes the request output
buffer and blocks until one is received.

Requests to the server These include requests for operations and informations as defined in

the X Window Protocol. In addition, the Xlib also provides facilities functions around most com-

mon requests (like for instance XSetWindowBorder () which actually performed a ChangeWindowAttribut
It also provides convenient structures for each reply sent by the server.

When a request sent by the client requires a reply to be generated from the server, the client
is blocked by the Xlib until a reply is generated by the server, even if the client does not need the
reply immediately, thus slowing down considerably the client for most requests it sends.

2.4.1.3 Pros

o well-established;

e well-documented;

2.4.1.4 Cons

e monolithic architecture resulting in big library size;

e complex and ugly code;

19

e inconsistent API;

e requests requiring a reply are synchronous;

2.4.1.5 Example

The listing A.1 (section A.1) shows commented code of a Xlib program displaying on the
terminal the output given in listing 2.4 when doing:

1. the window is shown (generate an Expose event);

2. apointer button is pressed;

3. the pointer is moved to another location on the window while keeping the button pressed;

4. the previously pressed button is released;

5. Switch to another virtual desktop;

6. Switch back to the created window virtual desktop;

7. the pointer is pressed and released immediately;

Current default screen size: 1400x1050, associated root window: 105
Expose event received!

Button pressed at [61, 132] (window relative coordinates)

Button released at [42, 88] (window relative coordinates)

Expose event received!

Button pressed at [42, 88] (window relative coordinates)

Button released at [42, 88] (window relative coordinates)

Listing 2.4: example program #1 output

24.2 XCB
2.4.2.1 Introduction

XCB (acronym of X C BINDING) is a C-language binding'® for the X Window System
started in 2001 by Bart Massey. The core and extension X Window Protocol are described as
XML files generated in yia XSLT'!. It is a replacement for Xlib featuring a small footprint, la-
tency hiding, direct access to the protocol, improved threading support and extensibility (quoted
from XCB description). Like Xlib, it is a free software licensed under the terms of the MIT
license. Barton Massey and Robert Bauer proved key portions of XCB formally correct using Z
notation. Unlike Xlib, XCB is based on a modular architecture.

10See glossary
1See glossary

20

2.4.2.2 Data types and functions

Like Xlib, XCB provides types for resources except that XCB relies on fixed-size integers
data type standardized by ISO C99 (commonly available in stdint .h CC library header).
Instead of defining macros, XCB makes extensive usage of enums, thus avoiding to define spe-
cific structures uselessly. For instance, Xlib defines a specific type XSetWindowAttributes
(listing A.1 in section A.1), whereas XCB relies on a pointer of uint 32_t and enum to achieve
exactly the same goal without increasing the API.

Like Xlib, XCB operations can be rougly grouped as:

Operations on the connection An opaque xcb_connection_t structure represents a

connection to the X server intialized when calling xcb_ connect () and destroyed by xcb_disconnect ().
Like the whole XCB API, the number of members in this private structure has been dramatically

reduced, the most important members are:

o afile handle to the network socket like Xlib but is accessed through xcb_get_file_descriptor ()
function.

o client-side datas as described in next paragraph.

e a pointer to a xcb_screen_t structure holding screen informations. Stepping through
the different screens can be achieved by iterators.

Clients-side datas and operations XCB maintains an queue holding requests sent by the
client and another queue holding both events and errors sent by the server. The queues are
managed thanks to the following functions:

e xcb_flush (): flushes the request queue, thus causing all requests to be send to the
Sserver.

e xcb_aux_sync (): similar to xcb_flush () but also waits until the server finishes
processing all the requests.

e xcb_wait_for_event (): blocks until an event is queued by the X server, and once
it becomes available it is immediately dequeued. If an error occurs, this function re-
turns NULL. It is considered as an equivalent to Xlib functions XNextEvent () and
XMaskEvent ().

e xcb_poll for_event (): returns the first event in the queue, directly dequeued, or
NULL if there is no event. It is an equivalent to Xlib functions XCheckMaskEvent ()
and XMaskEvent ().

Both xcb_wait_for_event () and xcb_poll_for_event () return a pointer to a
xcb_generic_event_t structure allocated in the heap which has to be freed afterwards.
This structure may be afterwards casted to the proper event type (like xcb_key_press_event_t
for example) according to the response_type field, because all events types are based on the
declaration of this generic event structure. Unlike Xlib functions, XCB doesn’t provide a way to
inspect and manage the event queue. Indeed, once an event or an error is dequeued, it can’t be
requeued afterwards, meaning that the client can not step through items in the queue (this kind
of operations add much more complexity and are not really needed, especially within a low-level
library like XCB).

21

Requests to the server When a request is sent with XCB, it returns a cookie which is an
identifier used to get the reply anytime. The type of cookie is xcb_void_cookie_t for
requests that do not generate a reply from the server, whereas for other requests, each one
has its own cookie type, for instance xcb_get_window_attributes_t is returned by
xcb_get_window_attributes () (GetWindowAttributes request in the X Window
Protocol). It is preferable to send the request and then ask for the reply as later as possible by
the clients ensuring it has already been processed by the X server. Therefore, This mechanism
makes requests and replies completely asynchronous.

XCB provides two modes, namely checked and unchecked, defining where the request is
stored for further processing by the client. If a request generates a protocol error in the former
mode, then the error goes into the event queue and may be processed in the event loop, whereas
the error is held aside in the latter mode until the client asks for the answer. An error is just a
structure names xcb_generic_error_t where the response_type field equals to 0.

2.4.2.3 xcb-util library

XCB intends to be a lower-level library than Xlib, as such it does not provide facilities like
ICCCM functions or handler facilities. In order to avoid for programmers to write themself this
kind of code, some XCB programmers started the xcb-util library based as well on a modular
which provides the following module (only the one used in Awesome XCB port are described
below):

e xch-atom: includes standard core X atom constants (notably WM_NAME, WM_CLASS...)
and atoms caching.

e xcb-aux: convenient access to connection setup and some core requests. It especially con-
tains xcb_aux_sync () described in section 2.4.2.2 and xcb_aux_get_screen ()
allows to get a pointer on a structure holding various informations about a XCB connec-
tion and a screen number (for instance the root window identifier associated to the screen
number).

e xcb-event: callback X events handling like Xlib does.
e xch-iccem: both clients and Window Manager helpers for ICCCM.

e xcb-keysym: standard X key constants and conversion to and from keycodes.

24.24 Pros
e modular architecture resulting in smaller library size;
e making multithreading easier and reliable;
e consistent API;

e completely asynchronous;

22

24.2.5 Cons

e not well documented;

e extensions missing (Xkb ...);

The cons points quoted above result from youthfulness of the XCB project. In addition, most
functions are easily understandable by reading Xlib documentation which is quite complete or
the X Window Protocol specification.

2.4.2.6 Example

The code given on listing A.2 (section A.2) is just the XCB equivalent to program explained
in section 2.4.1.5.
2.4.3 Xlib/XCB round-trip performance comparison

The listing A.3 given in section A.3 shows an example program comparing Xlib and XCB

performances about requests and replies (also known as a round-trip). It sends 500 atoms and
displays the following output:

=> XCB wrong usage (synchronous)
Duration: 0.038608s

=> XCB bad usage (asynchronous)
Duration: 0.002691s
Ratio : 14.35

=> Xlib traditional usage
Duration : 0.043487s
Ratio : 16.16

Listing 2.5: Output of program given in sectionA.3

This output clearly shows a dramatic speedup of requests and replies asynchronous XCB
method compared to Xlib traditional synchronous method of sending a request and blocks until
the reply is ready. In this case, XCB is about 16 times quicker than Xlib. This difference about
requests and replies time processing becomes more and more obvious as the number of Atom
requests sent following this method is important. XCB also provides a slight speedup compared
to Xlib even when both of them use the same method.

23

Chapter 3

Implementation

3.1 Introduction

Awesome is maintained thanks to Git!, a revision control system (also known as a RCS).
Basically, this kind of tool allows to work collaboratively on the same source code by providing
features like historic of changes made to the source among many other interesting features for
developers. Since I have begun to work on this project, I maintain my changes thanks to Git?.
It allows me to stay synchronized with Julien Danjou work by making merges between his code
and mine periodically.

Before beginning the port, I had to read a lot of documentation because I was pretty new
about X programming, like the X Window Protocol reference, Xlib documentation and XCB
tutorial. I had only worked with GTK toolkit, which is much more high-level than XCB is.
Then, I wrote some small programs to become familiar with both XCB and Xlib APIL.

3.2 Encountered issues

During the porting effort of Awesome from Xlib to XCB, I encoutered several problems,
especially about documentation. In fact, XCB is not well-documented making port harder. The
XCB tutorial is one of the only resource apart of the list of available functions. Hopefully, I was
able to get help on #xcb IRC channel.

3.3 About porting

I worked during several months without actually seeing anything because the port from Xlib
to XCB API has to be done completely before testing it. I follow these steps to port whole
Awesome code to XCB:

1. modification of the build system (Makefile.amfiles and configure.ac);

'http://git.or.cz/
Zavailable on: http:/git.naquadah.org/?p=arnau/awesome.git;a=summary

24

21

23

25

2. replace all Xlib types and fonction prototypes, sometimes involving running grep through
Xlib code to look for undefined values in XCB;

3. port one source file at the same time, once it is finished, build the associated object file
ensuring that there is no warning from the compiler;

Functions based on requests defined explicitely in the X Window Protocol are quite straight-
forward to port from Xlib to XCB, for instance:

/% Xlib code */
XDestroyWindow ((xsw)—>display , (*sw)—>window) ;
XFreePixmap ((*sw)—>display , (xsw)—>drawable);

/+ XCB equivalent x/
xcb_destroy_window ((*sw)—>connection , (xsw)—>window) ;
xcb_free_pixmap ((xsw)—>connection , (xsw)—>drawable);

Listing 3.1: Porting code from Xlib to XCB #1

However, porting a call from Xlib to XCB usually involves running grep in Xlib source
code and then read it to implement properly the code with XCB (figure 3.2 shows a port of Xlib
XMapRaised (). This step is usually needed to ensure that the ported call has been written
properly in order to avoid spending many hours at the end. ..

/x Xlib code x/

int

XMapRaised (
register Display xdpy,
Window w)

register xConfigureWindowReq xreq;
register xResourceReq *req2;
unsigned long val = Above; /x needed for macro x/

LockDisplay (dpy) ;

GetReqExtra(ConfigureWindow , 4, req);

req —>window = w;

req —>mask = CWStackMode ;

OneDataCard32 (dpy, NEXTPTR(req ,xConfigureWindowReq), val);
GetResReq (MapWindow, w, req2);

UnlockDisplay (dpy) ;

SyncHandle () ;

return 1;

}

/* XCB equivalent code %/
void
xutil_map_raised (xcb_connection_t xconn, xcb_window_t win)

{
const uint32_t map_raised_val = XCB_STACK MODE ABOVE;

25

27

29

31

xcb_configure_window (conn, win, XCB_CONFIG_WINDOW_STACK_MODE,
&map_raised_val);

xcb_map_window (conn, win);

Listing 3.2: Porting code from Xlib to XCB #2

3.4 Existing design

Awesome relies on Xinerama X extension to provide multihead support and also on
Randr extension allowing to resize a screen and rotate a display on the fly.

In addition of these X extension, Awesome is also based on Cairo, a 2D graphics library with
support for multiple output, and most notably a Xlib backend and an experimental XCB backend.
The drawing operations are actually all performed by using Cairo.

Font handling is performed with Xft and renders using Cairo until Awesome 2.2. From
current development version, text and font are renders with Pango library (forms the core of text
and font handling for GTK+-2.X) helps by a Cairo backend for Pango>.

More informations about Awesome sources files and dependencies between them is available
in the doc directory on the provided CD-RoMm.

3.5 Testing

I am currently using the XCB version I have ported from Xlib since one week and a half and
didn’t notice any bugs. In addition, at first startup of Awesome, I have even noticed that it is now
more responsive with XCB library than Xlib, for instance switching between tags seem quicker.
However, it is not really possible to measure quantitatively the performance improvement made
by switching to XCB.

3.6 Debugging tools

3.6.1 Xephyr

Xephyr is a nested X server, meaning that it can run inside another X server. This is particurly
useful when trying to fix bugs in Awesome code because it allows to debug it directly from the
main X Window Server.

3See section 3.8.1 for further informations

26

3.6.2 GDB

GDB is a free software command line debugguer, allowing for instance to set breakpoint
on specific instructions and also display values of variables in memory. The figure 3.1 shows
debugging of Awesome using Xephyr and GDB.

term |[8sh| v r scratchd scratchl

,06:21:28
,06:21:30

Figure 3.1: Debugging Awesome using Xephyr (top window) and GDB (bottom window)

27

3.7 Remaining issues

Xkb X extension support in XCB has begun some months, but at the moment, it is not finished
at all yet (in other words, the XML file describing the extension is not still not complete). That
is why the XCB port of Awesome misses this feature. I have already begun working on this issue
by reading some documentations about Xkb internals, but unfortunately I didn’t have enough
time yet to begin hacking on Xkb support in XCB.

According to Julien Danjou, the porting effort to XCB is already completed at 95% but the
code is still not in a releasable shape because it needs to be optimized. Indeed, the code has to be
reorganized by keeping in mind that once a request is sent, the reply must be asked to the server as
later as possible leaving time to the server to process the request and thus taking fully-advantage
of the asynchronous model proposed by XCB. This reorganization may be achieved, depending
on the part of the code, by executing as much code as possible between a request and a reply or
by splitting function in two parts: one would send the request while the other one would treat the

reply.

3.8 Patches

When porting Awesome from Xlib to XCB, I discovered some bugs or made some improve-
ments in Awesome and xcb-util library. These patches may not be related directly to the Awesome
port effort but contributes to improve existing code.

3.8.1 Awesome
Use Pango instead of Xft for handling client-side fonts

Awesome was using Xft library to handle client-side fonts until Awesome version 2.2. How-
ever, this library has not been ported yet to XCB and is not the preferable way. Indeed, Awesome
is using Cairo which could have been used to handle fonts, but it would have meant to write
Pango-like code. In addition, Pango provides code, namely pangocairo, to interact with cairo
data structures. This patch is available in section B.1.1.

Fix incorrect Xlib function call

When reading Awesome and Xlib codes, I found a bug caused by inconsistency in Xlib be-
tween XGet TransientForHint () prototype and actual returned value. Indeed, this func-
tion returns a St atus where Success equals to 0 whereas the function code returns a boolean
(0 in case of error and 1 otherwise). This patch is available in section B.1.2.

PATH MAX issue

According to POSIX specification, an operating system may define a macro called PATH_MAX
specifying the maximum size of a path name. This macro permits to store a path name in a string
allocate statically (e.g. on the stack). However, some operating systems, like GNU/Hurd, does
not have such paths size restriction, thus does not defined this macro and compilation fails.

28

I made two patches which get rid of PATH_MAX in favor of heap memory allocations. These
patches are available in section B.1.3.

3.8.2 xcb-util library
Fix invalid returned data

icccm/icccm. ¢ source file provides a xcb_get_wm_size_hints () function. It ac-
tually gets the WM__STIZE_HINTS client program property defined in ICCCM specification. This
property allows the client program to specify to the Window Manager further informations about
its geometry, like its minimum and maximum sizes for example. This XCB function used to fill
the xcb_size_hints_t given as a parameter.

It also contains a xcb_wm_hints_get_input () function which gets the WM_HINTS
ICCCM property, allowing to change window state of the client application top-level window
or the window urgency hints requiring the timely response of the user. This function returns a
pointer on a xcb_wm_hints_t structure newly allocated.

Both functions actually send X GetProperty request and gets the returned value accord-
ing to ICCCM specification. Unfortunately, the value data from GetProperty reply is incor-
rectly copied into structures described above.

I sent a patch to the XCB mailing list which fixes this issue and also make this API consistent,
this patch should be applied soon. Indeed, both functions now returns a pointer on hints structures
newly allocated and freed using specific destructors. This patch is available in section B.2.2.

Add a non blocking event loop

event/events.c source file included a xcb_wait_for_ event_loop () function.
This function only calls xcb_wait_for_event () (blocking way to receive events) as a
while loop condition. Its body calls the handler associated to the received event.

However, this source file does not provide a non-blocking way of event handling based on
xcb_poll_for_event (). The patch available in section B.2.3 fixes this issue and has al-
ready been applied in xcb-util official git repository.

Add missing XLookupString XCB equivalent

The Xlib function XLookupString () translates a key event to a KeySym and a string.
For instance, if the user presses Tab, it would be translated to a “string. However, even if
keysyms/keysym. c includes a function to translate a key event to a KeySym, there is no
function to get a string.

I haven’t written a patch against xcb-util yet although this code has already been implemented
in awesome-menu. c source file. This code is based on Xlib XLookupString () debugging,
because otherwise I couldn’t figure out how it works by just reading the Xlib code. I will prepare
a patch implementing this feature in xcb-util soon though.

29

Conclusion

30

20

22

24

26

28

30

32

Appendix A

Additional code listings

A.1 Xlib code of example program #1

/¥ Compilation: gcc —IXI11 xwindow—xlib—example.c —o xwindow—xlib —
example x/

#include <stdio.h>

#include <stdlib .h>

#include <error.h>

#include <X11/XIlib.h>

static int
xlib_error_handler (Display *dpy, XErrorEvent xerr)
{
if (err—>error_code == BadAlloc |l err—>error_code ==
BadImplementation)
/¥ The server is screwed: display the error and exit x/
error (EXIT_FAILURE, O,
"[ERROR]: fatal_error:_request_code: _%d, _error_code: _%d",
err —>request_code , err—>error_code);

}

int
main (void)
{
/x Open a connection to the X server on the display specified by the
DISPLAY environment variable as the parameter equals to NULL x/
Display *xdpy = XOpenDisplay (NULL) ;

/+* Check whether the connection has been successful x/
if (dpy == NULL)
error (EXIT_FAILURE, 0, "[ERROR]:_cannot_open_display");

/* Get the default screen number x/
int screen_nbr = DefaultScreen (dpy);

/* Get the root window */

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

Window root_win = DefaultRootWindow (dpy) ;

/x Display various informations about the display x/
printf (" Current_default_screen _size: %dx%d,_associated_root_window:
%d\n" ,
DisplayWidth (dpy, screen_nbr), DisplayHeight(dpy, screen_nbr)

)

root_win) ;

/x Set the default error handler x/
XSetErrorHandler (xlib_error_handler);

/* Prepare the window attributes given later to XCreateWindow (), set
the background pixel color to white and the event mask stating
interests in "Expose ’, "ButtonPress’ and "ButtonRelease’
events x/

XSetWindowAttributes wa;

wa.background_pixel = WhitePixel (dpy, screen_nbr);

wa.event_mask = ExposureMask | ButtonPressMask | ButtonReleaseMask;

/% Create a new InputOutput top—level window whose size is 150x200
at origin [I10, 50] with a border width equals to 0 %/
Window win = XCreateWindow (dpy, root_win, 10, 50, 150, 200, O,
CopyFromParent, InputOutput,
CopyFromParent,
CWEventMask | CWBackPixel, &wa) ;

/% Map the window on the screen (e.g. display it!) x/
XMapWindow (dpy , win);

Bool button_release_count = 0;
XEvent ev;

/* Main event loop displaying the coordinates of the pointer only in
the event window x/
while (button_release_count != 2)
{
/% XNextEvent() flushes the request output buffer x/
XNextEvent (dpy, &ev);
switch (ev.type)
{
case Expose:
printf ("Expose_event _received !\n");
break ;

case ButtonPress:

{
XButtonPressedEvent xe = (XButtonPressedEvent x) &ev;
printf ("Button_pressed_at_[%d, %d]_(window_relative
coordinates)\n",
e—>X, e—>y);
}
break;

case ButtonRelease:

i

86

88

90

92

94

96

98

100

102

104

20

22

XButtonReleasedEvent xe = (XButtonReleasedEvent x) &ev;
printf ("Button_released_at_[%d, %d]_ (window_relative_
coordinates)\n",
e—>X, e—>y);

/+x Exiting when a button has been released two times x/
++button_release_count ;

}

break ;
}

/x Close the connection to the X server leading to destruction of
all associated windows and the call of XSync() in order to get
any pending errors x/

XCloseDisplay (dpy) ;

return EXIT SUCCESS;
}

Listing A.1: XIib code of example program #1

A.2 XCB code of example program #1

/* Compilation: gcc ‘pkg—config —cflags —Ilibs xcb xcb—aux xcb—event
“A\

* xwindow—xcb—example.c —o xwindow—xcb—example

*/

#include <stdio.h>

#include <stdlib .h>

#include <error.h>

#include <stdbool.h>

#include <xcb/xcb.h>
#include <xcb/xcb_aux.h>
#include <xcb/xcb_event.h>

/¥ Not defined in XCB x/
#define BadAlloc 11
#define BadImplementation 17

/¥ Number of errors x/
#define ERRORS_NBR 256

static int
xcb_error_handler (void xdata, xcb_connection_t *xconn,
xcb_generic_error_t xerr)

{

11

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

/x Get the real request code which just failed x/
int real_request_code = x((uint8_t x) err + 10);

if (err —>error_code == BadAlloc || err—>error_code ==
BadImplementation)
/x The server is screwed: display the error and exit =/
error (EXIT_FAILURE, O,
"[ERROR]: fatal_error:_request_code: _%d, error_code: %d",
real_request_code , err—>error_code);

}

int
main (void)
{
/x Open a connection to the X server on the display specified by the
DISPLAY environment variable as the parameter equals to NULL %/
int default_screen;
xcb_connection_t xconn = xcb_connect(NULL, &default_screen);

/x Check whether the connection has been successful x/
if (xcb_connection_has_error(conn))
error (EXIT_FAILURE, 0, "[ERROR]:_cannot_open_display");

/x Get the screen informations x/
xcb_screen_t xscreen = xcb_aux_get_screen(conn, default_screen);

/* Display various informations about the display x/
printf (" Current_default_screen_size: _%dx%d,_associated_root_window:
Jd\n" ,
screen —>width_in_pixels , screen—>height_in_pixels ,
screen —>root) ;

/x Allocate events handler x/
xcb_event_handlers_t xevenths = xcb_alloc_event_handlers (conn);

/x Set the default error handler for all types of errors x/

unsigned int err_num;

for (err_num = 0; err_num < ERRORS_NBR; err_num++)
xcb_set_error_handler(evenths , err_num, xcb_error_handler , NULL) ;

/+* Prepare the window attributes given later to xcb_create_window (),
set the background pixel color to white and the event mask

stating interests in 'Expose’, 'ButtonPress’ and 'ButtonRelease’
events x/
const uint32_t create_win_vals[] = {

screen —>white_pixel ,

XCB_EVENT _MASK BUTTON_PRESS |
XCB_EVENT _MASK BUTTON_RELEASE | XCB_EVENT MASK EXPOSURE
}s

/x Create a new InputOutput top—level window whose size is 150x200
at origin [I10, 50] with a border width equals to 0, but firstly,
allocate a window resource on the server.... x/

xcb_window_t win = xcb_generate_id (conn);

xcb_create_window (conn ,

XCB_WINDOW_CLASS_COPY_FROM_PARENT,

v

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

win, screen—>root, 10, 50, 150, 200, O,
XCB_WINDOW_CLASS_INPUT_OUTPUT,
XCB_WINDOW_CLASS_COPY_FROM_PARENT,
XCB_CW_BACK_PIXEL | XCB_CW_EVENT MASK,
create_win_vals);

/x Map the window on the screen (e.g. display it!) x/
xcb_map_window (conn, win);

bool button_release_count = 0;
xcb_generic_event_t xev;

/* Main event loop displaying the coordinates of the pointer only in
the event window x/
while ((ev = xcb_poll_for_event(conn)) && button_release_count != 2)

{
switch ((ev—>response_type & 0x7f))

{

case XCB_EXPOSE:
printf ("Expose_event_received !\n");
break ;

case XCB_BUTTON_PRESS:
{
xcb_button_press_event_t xe = (xcb_button_press_event_t x)
ev;
printf ("Button _pressed, _at,_[%d, %d]_(window_relative
coordinates)\n",
e—>event_x , e—>event_y);

}

break ;

case XCB_BUTTON_RELEASE:
{
xcb_button_release_event_t xe = (
xcb_button_release_event_t %) ev;
printf ("Button_released_at _[%d, _%d]_(window_relative
coordinates)\n",
e—>event_x , e—>event_y);

/x Exiting when a button has been released two times x/
++button_release_count ;

}

break ;
}

free (ev);
}
/x Close the connection to the X server leading to destruction of
all associated windows x/

xcb_disconnect (conn) ;

xcb_free_event_handlers (evenths) ;

130

21

23

25

27

29

31

33

35

37

39

41

return EXIT SUCCESS;
}

Listing A.2: XCB code of example program #1

A.3 Performance comparison between Xlib and XCB

/%
Compilation: gcc —std=c99 ‘pkg—config —Ilibs —cflags xcb‘ —IXI11 \
xwindow—xlib —xcb—performances.c —o xwindow—xlib —xcb—
performances

* %

*
x This program 1is based on: http ://xcb. freedesktop.org/tutorial/
*/

/x asprintf() x/
#define _GNU_SOURCE

#include <stdlib .h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>

#include <xcb/xcb.h>
#include <X11/Xlib.h>

static double

get_time (void)

{
struct timeval timev;
gettimeofday(&timev , NULL) ;

return (double) timev.tv_sec + (((double)timev.tv_usec) / 1000000);
}

int
main (void)
{
unsigned int i;
double start , end, diff;

/* Number of IntermAtom X requests sent for performance
measurement x/
const int count = 500;

/x Init names */

char xnames[count |;
for(i = 0; i < count; ++i)

vi

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

71

79

81

83

85

87

89

91

93

asprintf (names + i, "NAMBld", i);
xcb_connection_t xconn = Xxcb_connect (NULL, NULL) ;

/+x Beginning of XCB synchronous method (wrong usage!) x/
xcb_atom_t atoms|[count];

start = get_time () ;
for(i = 0; i < count; ++i)
atoms[i] = xcb_intern_atom_reply (conn,

xcb_intern_atom (conn, O,
strlen (names|[i])
names|[i]),
NULL)—>atom ;

end = get_time () ;

printf ("=>_XCB_wrong_usage_(synchronous)\n");
printf ("Duration: _%fs\n\n", end — start);
diff = end — start;

/+* End of XCB synchronous method x/

/+x Beginning of XCB asynchronous method (good usage!) x/
xcb_intern_atom_cookie_t atom_cookies[count];

xcb_atom_t atoms_xcb[count];

start = get_time () ;

/+x Send the request x/

for(i = 0; i < count; ++i)
atom_cookies[i] = xcb_intern_atom (conn, O, strlen(names[i]), names
[i]);
/* Now get the replies x/
for(i = 0; i < count; ++i)
{
xcb_intern_atom_reply_t %r = xcb_intern_atom_reply (conn,
atom_cookies [
i]9
0);
if(r)
atoms_xcb[i1] = r—>atom;
free(r);
}

end = get_time ();

printf ("=>_XCB_bad_usage_(asynchronous)\n");
printf ("Duration: %fs\n", end — start);
printf ("Ratio__ : %.2f\n\n", diff / (end — start));

diff = end — start;
/+x End of XCB asynchronous method x/

/*x Close XCB connection to the X server x/

Vil

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

xcb_disconnect (conn) ;

/x Xlib method

Note: one could argue that the library provides XinternAtoms ()

function which sends the atoms asynchronously ,

asynchronous method is quite complicated to use in Xlib,

addition , this is not the purpose of this program x/
Display *xdpy = XOpenDisplay (NULL) ;

Atom atoms_xlib[count];
start = get_time () ;

for (i = 0; i < count; ++i)
atoms_xlib[i] = XInternAtom (dpy, names[i], 0);

end = get_time () ;

printf ("=>_Xlib_traditional _usage\n");
printf ("Duration_: %fs\n", end — start);
printf ("Ratio : ,%.2f\n", (end — start) / diff);

[T TR T '

/x End of Xlib method x/
/¥ Free variables x/
for (i = 0; i < count; ++i)

free (names[i]) ;

/x Close the Xlib connection to the X server x/
XCloseDisplay (dpy) ;

return EXIT SUCCESS;

but
in

Listing A.3: Performance comparison between Xlib and XCB

viil

20

22

24

26

Appendix B

Patches

B.1 Awesome patches

B.1.1 Replace Pango by Xft to handle client-side fonts

commit 542a944361el10elaad4976e10814f0aa51818a2le
Author: Arnaud Fontaine <arnau@debian.org>
Date : Mon Mar 17 11:38:49 2008 +0000

Use Pango for fonts instead of Xft (which hasn’t been ported yet
to
XCB) to measure text.

diff —git a/Makefile.am b/Makefile .am
index 941dd83..55ccfc2 100644
—— a/Makefile .am
+++ b/ Makefile .am
@@ —107,7 +107,7 @@ AWESOME _CFLAGS = —std=gnu99 —pipe \
—Wunused —Winit—self —Wpointer—arith —Wredundant—
decls \
—Wmissing—prototypes —Wmissing—format—attribute —
Wmissing—noreturn
endif
—AM_CPPFLAGS = $(XFT_CFLAGS) $ (X CFLAGS) $(CAIRO_CFLAGS) $(
CONFUSE_CFLAGS) $(XRANDR CFLAGS) $(XINERAMA CFLAGS) $(
AWESOME_CFLAGS)
+AM_CPPFLAGS = $(X_CFLAGS) $(PANGOCAIRO_CFLAGS) $(CONFUSE_CFLAGS) $(
XRANDR_CFLAGS) $(XINERAMA_CFLAGS) $(AWESOME _CFLAGS)

bin. PROGRAMS += awesome

awesome_SOURCES = \

@@ —140,7 +140,7 @@ awesome_SOURCES = \

ewmh.c ewmh.h

awesome_SOURCES += $(LAYOUTS)

awesome_SOURCES += $(WIDGETS)

—awesome_LDADD = $(XFT_LIBS) $(X_LIBS) $(CAIRO_LIBS) $(CONFUSE_LIBS) $
(XRANDR_LIBS) $(XINERAMA_LIBS)

+awesome_LDADD = $(X_LIBS) $(PANGOCAIRO_LIBS) $(CONFUSE_LIBS) $(
XRANDR_LIBS) $(XINERAMA_LIBS)

1X

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

bin_PROGRAMS += awesome—client
awesome_client_SOURCES = \
@@ —159,7 +159,7 @@ awesome_message_SOURCES = \
common/ xscreen .h common/xscreen.c \
awesome—message . c

—awesome_message_ LDADD = $(XFT_LIBS) $(X_LIBS) $(CAIRO_LIBS) $(
CONFUSE_LIBS) $(XINERAMA_LIBS)

+awesome_message_ LDADD = $(X_LIBS) $(PANGOCAIRO_LIBS) $(CONFUSE_LIBS)
$ (XINERAMA_LIBS)

bin_PROGRAMS += awesome—menu
awesome_menu_SOURCES = \
@@ —171,7 +171,7 @@ awesome_menu_SOURCES = \
common/ xutil .h common/ xutil.c \
awesome—menu . C

—awesome_menu_LDADD = $(XFT_LIBS) $(X_LIBS) $(CAIRO_LIBS) $(
CONFUSE_LIBS) $(XINERAMA_LIBS)

+awesome_menu_LDADD = $(X_LIBS) $(PANGOCAIRO_LIBS) $(CONFUSE_LIBS) $(
XINERAMA_LIBS)

if HAVE_XMLTO
if HAVE_ASCIIDOC
diff —git a/README b/README
index b50e97c¢..0871992 100644
—— a/README
+++ b/README
@@ —5,77 +5,7 @@ awesome is an extremely fast, small, and dynamic
window manager for X.
Requirements

In order to build awesome itself , you need header files and libs of:
— — Xlib, Xinerama, Xrandr, Xft

+ — Xlib, Xinerama, Xrandr, Pango
— libconfuse >= 2.6
— cairo
diff —git a/awesomerc.5.txt b/awesomerc.5. txt

index b03c5bd..9cOdcda 100644

—— a/awesomerc .5. txt

+++ b/awesomerc.5. txt

@@ —524,7 +524,7 @@ Note: when there is no whitespace, quotes are

optional .
<boolean> —> "true" or "false"
<color> —> #ff9933 (hexadecimal color notation: #red green
blue)
<float > —> 0.3, 0,8 (often values between O and 1 are useful)
— —> Xft font: mono—10, fixed —12, sans —8, .
+ —> Pango font: sans 10, sans italic 10, fixed 12,
<identifier > —> foobar (choose a name/string)
<image> —> "/home/awesome/pics/icon.png" (path to image)
<integer > —> 1, 10, =3 (positive numbers are required mostly)
diff —git a/awesomerc.in b/awesomerc.in

index bfa2d0f..34136e0 100644

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

—— a/awesomerc.in
+++ b/awesomerc.in
@@ —4,7 +4,7 @@ screen 0

{

normal
{
— font = "vera—10"
+ font = "vera 10"
fg = "#eeeeee"

bg = "#111111"
border = "#6666 ff"
diff —git a/common/draw.c b/common/draw.c
index 275b140..b8a3d4b 100644
—— a/common/draw.c
+++ b/common/draw.c
@@ —-20,7 +20,6 @@
*/

#include <cairo.h>
—#include <cairo—ft.h>
#include <cairo—xlib .h>

#include <langinfo.h>
@@ —99,6 +98,7 @@ draw_context_new (Display xdisp, int phys_screen, int
width, int height, Drawable
d—>drawable = dw;
d—>surface = cairo_xlib_surface_create (disp, dw, d—>visual , width
, height);
d—>cr = cairo_create (d—>surface);
+ d—>layout = pango_cairo_create_layout(d—>cr);

return d;
he
@@ —109,11 +109,70 @@ draw_context_new (Display xdisp, int phys_screen,
int width, int height, Drawable

void
draw_context_delete (DrawCtx xctx)
{

+ g_object_unref(ctx —>layout);

cairo_surface_destroy (ctx —>surface);
cairo_destroy (ctx —>cr) ;
p_delete(&ctx);

}

+/x% Create a new Pango font

+ * \param disp Display ref

+ x \param fontname Pango fontname (e.g. [FAMILY-LIST] [STYLE-OPTIONS]
[SIZE])

+ x/

+font_t =

+draw_font_new (Display xdisp, char xfontname)

+{

+ cairo_surface_t xsurface;

+ cairo_t xcr;

+ PangoLayout xlayout;

+ font_t xfont = p_new(font_t, 1);

X1

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

+ PangoContext xcontext;

+ PangoFontMetrics *font_metrics;

+

+ /* Create a dummy cairo surface, cairo context and pango layout
in

+ x order to get font informations x/

+ surface = cairo_xlib_surface_create (disp,

+ DefaultScreen (disp),

+ DefaultVisual (disp ,
DefaultScreen (disp)),

+ DisplayWidth (disp ,
DefaultScreen (disp)),

ot DisplayHeight (disp ,
DefaultScreen (disp)));

+

+ cr = cairo_create (surface);

+ layout = pango_cairo_create_layout(cr);

+

+ /* Get the font description used to set text on a PangoLayout x/

+ font —>desc = pango_font_description_from_string (fontname) ;

+ pango_layout_set_font_description (layout, font—>desc);

+

+ /+ Get height x/

-+ pango_layout_get_pixel_size (layout, NULL, &font—>height);

+

+ /* Get ascent and descent x/

P context = pango_layout_get_context(layout);

+ font_metrics = pango_context_get_metrics (context, font—>desc,
NULL) ;

+

+ /* Values in PangoFontMetrics are given in Pango units x/

+ font —>ascent = PANGO_PIXELS(pango_font_metrics_get_ascent(
font_metrics));

+ font —>descent = PANGO_PIXELS(pango_font_metrics_get_descent(
font_metrics));

+

+ pango_font_metrics_unref (font_metrics);

+ g_object_unref(layout);

+ cairo_destroy (cr);

+ cairo_surface_destroy (surface);

+

+ return font;

+}

+

+/x+ Delete a font

+ x \param font font_t to delete

+ o/

+void

+draw_font_free(font_t xfont)

+{

+ pango_font_description_free (font—>desc);

+ p_delete(&font);

+}

+

/% Draw text into a draw context
* \param ctx DrawCtx to draw to

Xii

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

* \param area area to draw to
@@ —136,7 +195,6 @@ draw_text(DrawCtx *ctx,
int nw = 0, x, y;
ssize_t len, olen;
char sxbuf = NULL, *xutf8 = NULL;
— cairo_font_face_t xfont_face;

draw_rectangle (ctx , area, True, style.bg);

@@ —175,12 +233,11 @@ draw_text(DrawCtx xctx,
buf[len — 3] = .7,
}

— font_face = cairo_ft_font_face_create_for_pattern(style.font—>
pattern);

— cairo_set_font_face (ctx—>cr, font_face);

— cairo_set_font_size (ctx —>cr, style.font—>height);

+ pango_layout_set_text(ctx —>layout, text, —1);
-+ pango_layout_set_font_description (ctx —>layout, style.font—>desc);
X = area.X + padding;
— y = area.y + style.font—>ascent + (ctx—>height — style.font—>
height) / 2;
+ y = area.y + (ctx—>height — style.font—>height) / 2;

switch (align)
{
@@ —201,7 +258,8 @@ draw_text(DrawCtx *ctx,
style .shadow. green / 65535.0,
style .shadow.blue / 65535.0);
cairo_move_to(ctx—>cr, x + style.shadow_offset, y + style.
shadow_offset) ;
— cairo_show_text(ctx —>cr, buf);
+ pango_cairo_update_layout(ctx —>cr, ctx—>layout);
-+ pango_cairo_show_layout(ctx —>cr, ctx—>layout);

}

cairo_set_source_rgb (ctx —>cr,
@@ —209,9 +267,8 @@ draw_text(DrawCtx *ctx,
style.fg.green / 65535.0,

style.fg.blue / 65535.0);
cairo_move_to(ctx—>cr, X, y);
— cairo_show_text(ctx —>cr, buf);
— cairo_font_face_destroy (font_face);
+ pango_cairo_update_layout(ctx —>cr, ctx—>layout);
+ pango_cairo_show_layout(ctx —>cr, ctx—>layout);

p_delete(&buf);
}
@@ —597,12 +654,12 @@ draw_rotate (DrawCtx *ctx, int phys_screen,
double angle, int tx, int ty)
x \return text width
*/
unsigned short
—draw_textwidth (Display =xdisp, XftFont xfont, char xtext)

Xiil

230

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

+draw_textwidth (Display xdisp, font_t xfont, char *xtext)
{
cairo_surface_t =xsurface;
cairo_t xcr;
— cairo_font_face t xfont_ face;
— cairo_text_extents_t te;
+ PangoLayout xlayout;
-+ PangoRectangle ext;

if (la_strlen(text))
return O;
@@ —612,15 +669,15 @@ draw_textwidth (Display xdisp, XftFont xfont,
char *text)

DisplayWidth (disp ,
DefaultScreen (disp)),
DisplayHeight (disp ,
DefaultScreen (disp)));
cr = cairo_create (surface);
— font_face = cairo_ft_font_face_create_for_pattern (font—>pattern);

— cairo_set_font_face(cr, font_face);

— cairo_set_font_size (cr, font—>height);
cairo_text_extents (cr, text, &te);

layout = pango_cairo_create_layout(cr);
pango_layout_set_text(layout, text, —1);
pango_layout_set_font_description (layout, font—>desc);
pango_layout_get_pixel_extents (layout, NULL, &ext);
g_object_unref(layout);

cairo_destroy (cr);

cairo_surface_destroy (surface);

— cairo_font_face_destroy (font_face);

+ 4+ + + +

— return MAX(te .x_advance, te.width);
+ return ext.width;

}

/*% Transform a string to a Alignment type.
@@ —683,7 +740,7 @@ draw_style_init(Display =xdisp, int phys_screen,
cfg_t xcfg,
return ;

if ((buf = cfg_getstr(cfg, "font")))
= c—>font = XftFontOpenName(disp, phys_screen, buf);
+ c—>font = draw_font_new (disp, buf);

draw_color_new (disp, phys_screen,
cfg_getstr(cfg, "fg"), &c—>fg);
diff —git a/common/draw.h b/common/draw.h
index d86fea5..2be2cad 100644
—— a/common/draw .h
+++ b/common/draw .h
@@ —-27,7 +27,7 @@
#include <confuse.h>

#include <X11/Xl1ib.h>

—#include <X11/Xft/Xft.h>
+#include <pango/pangocairo.h>

X1V

282

284

286

288

290

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

#include "common/util .h"
#include "common/list.h"
@@ —83,6 +83,14 @@ area_get_intersect_area(area_t a, area_t b)

typedef struct

{
T PangoFontDescription *xdesc;
+ int height;
+ int ascent;
+ int descent;
+} font_t;
+
+typedef struct
+{

/+x Foreground color x/
XColor fg;
/++ Background color x/

@@ —94,7 +102,7 @@ typedef struct
/*xx Shadow offset x/
int shadow_offset;
/**x Font x/

— XftFont xfont;

+ font_t xfont;

} style_t;

typedef struct

@@ —108,11 +116,14 @@ typedef struct
int depth;
cairo_t xcr;
cairo_surface_t xsurface;

+ PangoLayout xlayout;

} DrawCtx;

DrawCtx xdraw_context_new (Display =x, int, int, int, Drawable);
void draw_context_delete (DrawCtx x);

+font_t xdraw_font_new (Display =xdisp, char xfontname);

+void draw_font_free(font_t x);

void draw_text(DrawCtx *, area_t, Alignment, int, char *, style_t);

void draw_rectangle (DrawCtx =, area_t, Bool, XColor);

void draw_rectangle_gradient(DrawCtx x, area_t, Bool, area_t, XColor
x, XColor *, XColor x);

@@ —125,7 +136,7 @@ void draw_image(DrawCtx %, int, int, int, const
char x);

void draw_image_from_argb_data(DrawCtx %, int, int, int, int, int,
unsigned char x*);

area_t draw_get_image_size(const char xfilename);

Drawable draw_rotate (DrawCtx *, int, double, int, int);

—unsigned short draw_textwidth (Display *, XftFont %, char x);

+unsigned short draw_textwidth(Display *, font_t =x, char x);

Alignment draw_get_align(const char x);

Bool draw_color_new (Display %, int, const char %, XColor x);

void draw_style_init(Display *, int, cfg_t %, style_t =, style_t x);

diff —git a/configure.ac b/configure.ac

index 06e6006..94e¢a525 100644

XV

334

336

338

340

342

344

346

350

352

354

356

358

360

362

364

366

368

370

372

374

376

—— a/configure.ac
+++ b/configure . ac
@@ —106,12 +106,10 @@ AC_DEFINE_UNQUOTED ([AWESOME_COMPILE BY], ["

$aw_whoami"], [build user])

Checks for libraries.
AC_PATH_XTRA
—PKG_CHECK_MODULES ([CAIRO], [cairo],,

[AC_MSG_ERROR ([awesome requires cairo.])])

+PKG_CHECK _MODULES ([PANGOCAIRO], [pangocairo],,

+

[AC_MSG_ERROR ([awesome requires pangocairo.])])

PKG_CHECK_MODULES ([CONFUSE], [libconfuse >= 2.6],,

[AC_MSG_ERROR ([awesome requires libconfuse >= 2.6.])1])

—PKG_CHECK MODULES ([XFT], [xft],,

[AC_MSG_ERROR ([awesome requires xft.])])

PKG_CHECK _MODULES ([XINERAMA], [xinerama],,

[AC_MSG_ERROR ([awesome requires Xinerama.]) |)

PKG_CHECK_MODULES ([XRANDR], [xrandr],,

diff —git a/widgets/textbox.c b/widgets/textbox.c

index 5a85a55..87652cf 100644
—— a/widgets/textbox.c

+++ b/widgets/textbox.c
@@ —65,7 +65,7 @@ static widget_tell_status_t

textbox_tell (Widget xwidget, char xproperty , char xcommand)

{

Data *d = widget—>data;
XftFont *newfont;
font_t xnewfont;

if (!a_strcmp (property , "text"))
{

@@ —88,11 +88,10 @@ textbox_tell (Widget xwidget, char xproperty , char

xcommand)
return WIDGET_ERROR_FORMAT COLOR;
else if (!a_strcmp(property, "font"))
{
if ((newfont = XftFontOpenName (globalconf. display ,
get_phys_screen (widget—>
statusbar —>screen), command)))
if ((newfont = draw_font_new (globalconf.display , command)))
{
if (d—>style.font != globalconf.screens[widget—>statusbar
—>screen]. styles .normal. font)
XftFontClose (globalconf.display , d—>style.font);
draw_font_free (d—>style . font);
d—>style . font = newfont;

}

else

Listing B.1: [PATCH] Replace Pango by xft to handle client-side fonts #1

commit f75f16¢c3251575da9bc30e9826118872ec0d73cf
Author: Arnaud Fontaine <arnau@debian.org>
Date : Mon Mar 17 16:55:38 2008 +0000

Don’t get ascent/descent informations about a font because it’s

XVi

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

not
useful at the moment (commented out).

diff —git a/common/draw.c b/common/draw.c

index b8a3d4b..el9ba94 100644

—— a/common/draw.c

+++ b/common/draw .c

@@ —126,8 +126,6 @@ draw_font_new (Display xdisp, char xfontname)
cairo_t *cr;
PangoLayout xlayout;
font_t xfont = p_new(font_t, 1);

— PangoContext xcontext;

— PangoFontMetrics *font_metrics;

/* Create a dummy cairo surface, cairo context and pango layout

in
x order to get font informations x/
@@ —147,6 +145,12 @@ draw_font_new (Display xdisp, char xfontname)
/* Get height x/
pango_layout_get_pixel_size (layout, NULL, &font—>height);

+ /+ At the moment, we don’t need ascent/descent but maybe it could
+ % be useful in the future ... =x/
+#if 0O
+ PangoContext *context;
+ PangoFontMetrics *font_metrics;
+
/* Get ascent and descent x/
context = pango_layout_get_context(layout);
font_metrics = pango_context_get_metrics(context, font—>desc,
NULL) ;

@@ —156,6 +160,8 @@ draw_font_new (Display «disp, char xfontname)
font—>descent = PANGO_PIXELS(pango_font_metrics_get_descent(
font_metrics));

pango_font_metrics_unref(font_metrics);
+#endif
+
g_object_unref(layout);
cairo_destroy (cr);
cairo_surface_destroy (surface);
diff —git a/common/draw.h b/common/draw.h
index 2be2cad..18811a7 100644
—— a/common/draw .h
+++ b/common/draw .h
@@ —85,8 +85,6 @@ typedef struct

{
PangoFontDescription *xdesc;
int height;
— int ascent;
— int descent;
} font_t;

typedef struct

Listing B.2: [PATCH] Replace Pango by xft to handle client-side fonts #2

Xvil

21

23

25

27

29

31

33

35

37

39

41

43

B.1.2 Fix incorrect Xlib function call

commit 7a2b851a03047377c9eb4932eclc785ad49al4cs
Author: Arnaud Fontaine <arnaud@andesi.org>
Date : Mon Jan 7 18:57:25 2008 +0100

fix XGetTransientForHint () call
Signed—off—by: Julien Danjou <julien@danjou.info>

diff —git a/client.c b/client.c
index a31f774..54670da 100644
—— al/client.c
+++ b/client.c
@@ —307,7 +307,7 @@ client_manage (Window w, XWindowAttributes xwa,
screen)
{
Client xc, xt = NULL;
Window trans ;
— Status rettrans ;
+ Bool rettrans ;
XWindowChanges wc;
Area area, darea;
Tag xtag;
@@ —388,8 +388,10 @@ client_manage (Window w, XWindowAttributes xwa,
int screen)
/* grab buttons x/
window_grabbuttons (phys_screen , c—>win, False, True);

= /* check for transient and set tags like its parent x/

int

— if ((rettrans = XGetTransientForHint(globalconf.display , w, &trans

) == Success)

+ /+* check for transient and set tags like its parent,
+ * XGetTransientForHint returns 1 on success
+ */
+ if ((rettrans = XGetTransientForHint(globalconf.display , w, &trans
)
&& (t = get_client_bywin(globalconf.clients , trans)))
for(tag = globalconf.screens[c—>screen].tags; tag; tag = tag
—>next)

if (is_client_tagged (t, tag))
@@ —397,7 +399,7 @@ client_manage (Window w, XWindowAttributes xwa,
screen)

/+* should be floating if transsient or fixed =x/

if (!c—>isfloating)
— c—>isfloating = (rettrans == Success) |l c—>isfixed;
+ c—>isfloating = rettrans |l c—>isfixed;

/+* save new props */
client_saveprops(c);

int

Listing B.3: [PATCH] Fix incorrect Xlib XGet TransientForHint () call

XVviii

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

B.1.3 Fix pPATH MAX issue

commit fc9e31ff62a176d4722fbf40ff21e7dd2d53da73
Author: Arnaud Fontaine <arnaud@andesi.org>
Date : Thu Mar 13 15:11:59 2008 +0100

get rid of PATH MAX

I replaced stack memory allocations with PATH MAX by heap
memory

allocations on post—2.2 branch because PATH MAX isn’t necessary
defined

according to POSIX specification . For instance GNU/Hurd doesn’
t have

PATH size restriction , thus doesn’t defined PATH MAX and
compilation

will fail.

Signed—off—by: Julien Danjou <julien@danjou.info>

diff —git a/awesome—menu.c b/awesome—menu.c
index 9cbaeff..d79490c 100644

—— a/awesome—menu. ¢

+++ b/awesome—menu.c

@@ —-19,7 +19,9 @@

*
*/

+/% getline (), asprintf () =*/
#define _GNU_SOURCE

+

#include <getopt.h>

#include <signal.h>
@@ -28,6 +30,7 @@
#include <dirent.h>
#include <pwd.h>
#include <sys/types.h>
+#include <string.h>

#include <confuse.h>
@@ —222,7 +225,7 @@ get_last_word (char xtext)

static Bool
item_list_fill_file (const char xdirectory)

{
— char cwd[PATH_MAX], xhome, *user, xfilename;
+ char *cwd, xhome, xuser, *xfilename ;

const char *xfile;

DIR xdir;

struct dirent xdirinfo;
@@ —234,14 +237,13 @@ item_list_fill_file (const char xdirectory)
item_list_wipe(&globalconf.items);

if (! directory)
— a_strcpy (cwd, sizeof(cwd), "./");

Xix

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

+ cwd = a_strdup ("./");
else if(a_strlen(directory) > 1 && directory [0] == ’~’)
{
if (directory [1] == /)
{
— if ((home = getenv ("HOME")))
— a_strcpy (cwd, sizeof(cwd), home);
— a_strcat(cwd, sizeof(cwd), directory + 1);

+ home = getenv ("HOME") ;
+ asprintf(&ewd, "%s%s", (home ? home : ""), directory + 1)
}
else
{
@@ —252,8 +254,7 @@ item_list_fill_file (const char xdirectory)
a_strncpy (user, len, directory + 1, (file — directory) —
1);
if ((passwd = getpwnam(user)))
{

— a_strcpy (cwd, sizeof(cwd), passwd—>pw_dir);

— a_strcat(cwd, sizeof(cwd), file);

+ asprintf(&ewd, "%s%s", passwd—>pw_dir, file);
p_delete(&user);

1
else
@@ —264,10 +265,13 @@ item_list_fill_file (const char xdirectory)
1
1
else
— a_strcpy (cwd, sizeof(cwd), directory);
+ cwd = a_strdup (directory);

if (!(dir = opendir(cwd)))

+ {

+ p_delete(&cwd) ;
return False;

+ }

while ((dirinfo = readdir(dir)))
{

@@ —296,6 +300,7 @@ item_list_fill_file (const char xdirectory)
}

closedir (dir);
+ p_delete(&cwd) ;

return True;
}
@@ —568,25 +573,31 @@ handle_kpress (XKeyEvent xe)
static Bool
item_list_fill_stdin (void)
{
— char buf[PATH MAX];
char sxbuf = NULL;
size_t len = 0;
ssize_t line_len;

+ + +

XX

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

item_t xnewitem ;
Bool has_entry = False;

item_list_init(&globalconf.items);
— if (fgets(buf, sizeof(buf), stdin))
+ if ((line_len = getline(&buf, &len, stdin)) != —1)

has_entry = True;

if (has_entry)

do
{
- buf[a_strlen (buf) — 1] = ’\0’;
+ buf[line_len — 1] = ’\0’;
newitem = p_new(item_t, 1);
newitem —>data = a_strdup (buf);
newitem —>match = True;
item_list_append(&globalconf.items, newitem);
}

— while (fgets (buf, sizeof(buf), stdin));
while ((line_len = getline(&buf, &len, stdin)) !=

if (buf)
p_delete(&buf);

+ + + +

return has_entry;
}
diff —git a/uicb.c b/uicb.c
index 0a94a55..63 fadbf 100644
—— al/uicb.c
+++ b/uicb.c
@@ —23,7 +23,11 @@
* @defgroup ui_callback User Interface Callbacks
*/

+/+ strndup () */
+#define _GNU_SOURCE
+

#include <sys/wait.h>
+#include <string.h>

#include "awesome.h"

#include "tag.h"

@@ —45,10 +49,11 @@ extern AwesomeConf globalconf;
* \ingroup ui_callback

*/
void
—uicb_exec(int screen __attribute__ ((unused)), char =xarg)
+uicb_exec(int screen __attribute__ ((unused)), char xcmd)
{

Client xc;
— char path [PATH MAX];
+ int args_pos;
+ char xargs, xpath;

XX1

-1);

161

163

165

167

169

171

173

175

177

179

181

183

185

20

22

24

26

/+* remap all clients since some WM won’t handle them otherwise x/

for(c = globalconf.clients; c¢; ¢ = c—>next)
@@ —59,8 +64,21 @@ uicb_exec(int screen __attribute__ ((unused)),
xarg)

if (globalconf.display)
close (ConnectionNumber (globalconf . display));

sscanf (arg, "%s", path);
execlp (path, arg, NULL);

+ /* Ignore the leading spaces if any x*/
+ for (args_pos = O0;
+ args_pos < strlen(cmd) && cmd[args_pos] == ~ ’;
+ ++args_pos);
+
+ /* Get the beginning of the arguments x/
+ if ((args = strchr(ecmd + args_pos, ° ’)) == NULL)
+ {
+ warn (" Invalid command %s\n", cmd) ;
+ return ;
+ }
+
+ path = strndup (cmd + args_pos, args — (cmd + args_pos));
+ execlp (path, cmd, NULL);
+ p_delete(&path);
}

/+% Spawn another process

char

Listing B.4: [PATCH] Get rid of PATH _MAX #l

commit 77dfdd29286fd5c6bf8cbc5e918863a00378c9b7
Author: Arnaud Fontaine <arnaud@andesi.org>
Date: Tue Mar 18 17:25:57 2008 +0100

Remove PATH MAX usage from awesome—menu
Signed—off—by: Julien Danjou <julien@danjou.info>

diff —git a/awesome—menu.c b/awesome—menu.c
index cc20528..92f3ab3 100644
—— a/awesome—menu. ¢
+++ b/awesome—menu. c
@@ —22,6 +22,8 @@
/% getline (), asprintf () =x/
#define _GNU_SOURCE

+#define CHUNK_SIZE 4096
+
#include <getopt.h>

#include <signal .h>

@@ —93,7 +95.9 @@ typedef struct
/+% Numlock mask =/
unsigned int numlockmask;
/% The text =x/

— char text[PATH MAX];

XXil

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

+ char *text;
+ /+x The text length x/
+ size_t text_size;
/% Item list =x/
item_t xitems ;
/**x Selected item x/
@@ —453,6 +457,7 @@ handle_kpress (XKeyEvent xe)
KeySym ksym;

int num;
ssize t len;
+ size t text_dst_len;
len = a_strlen(globalconf.text);

num = XLookupString(e, buf, sizeof (buf), &ksym, 0);
@@ —516,6 +521,14 @@ handle_kpress (XKeyEvent xe)
if (buf[0] != ’/” |l globalconf.text[len — 1] != ’/7)
{
buf[num] = ’\0’;
+
+ /* Reallocate text string if needed to hold
+ % concatenation of text and buf x*/
+ if ((text_dst_len = (a_strlen(globalconf.text) + num —
1)) > globalconf.text_size)
+ {
+ globalconf.text_size += ((int) (text_dst_len /
globalconf.text_size)) x CHUNK_SIZE;
+ p_realloc(&globalconf.text, globalconf.text_size)
+ }

a_strncat(globalconf.text, sizeof(globalconf.text),
buf, num);
}
compute_match(get_last_word (globalconf.text));
@@ —677,6 +690,12 @@ main(int argc, char xxargv)
if (litem_list_fill_stdin ())
item_list_fill_file (NULL) ;

/+ Allocate a default size for the text on the heap instead of
* using stack allocation with PATH MAX (may not been defined
* according to POSIX). This string size may be increased if
* needed */
globalconf.text = p_new(char, CHUNK_ SIZE) ;
globalconf.text_size = CHUNK_SIZE;

compute_match (NULL) ;

+ 4+ + + + +

for (opt = 1000; opt; opt——)
@@ —727,6 +746,7 @@ main(int argc, char xxargv)
}
1

+ p_delete(&globalconf.text);
draw_context_delete (globalconf.ctx);
simplewindow_delete (globalconf.sw);
XCloseDisplay (disp);

Listing B.5: [PATCH] Get rid of PATH_MAX #2

XXiil

20

22

24

26

28

30

32

34

36

38

40

42

44

46

B.2 xcb-util patches

B.2.1 Add non-blocking events loop

commit 66728b2d13f3eee94230038c8f8eb236c20b9525
Author: Arnaud Fontaine <arnaud@andesi.org>
Date: Mon Jan 28 14:26:05 2008 —0800

Add xcb_poll_for_event_loop and rename xcb_event_loop to match.

I’'m currently porting Awesome[0] from Xlib to XCB as a school
project for

my bachelor. I discussed with Vincent about adding a non—blocking

xcb_event_loop on IRC because I had to write one for Awesome and
wondered

if this kind of function could be added to xcb—util.

[0] http ://awesome.naquadah.org
Signed—off —by: Jamey Sharp <jamey@minilop.net>

diff —git a/event/events.c b/event/events.c
index 2900bd3..354346a 100644
—— al/event/events.c
+++ b/event/events.c
@@ —62,7 +62,7 @@ static int handle_event(xcb_event_handlers_t x
evenths , xcb_generic_event_t xeven
return O;

}

—void xcb_event_loop(xcb_event_handlers_t xevenths)

+void xcb_wait_for_event_loop(xcb_event_handlers_t xevenths)

{
xcb_generic_event_t xevent;
while ((event = xcb_wait_for_event(evenths —>c)))

@@ —-72,6 +72,16 @@ void xcb_event_loop(xcb_event_handlers_t xevenths)
}

}

+void xcb_poll_for_event_loop(xcb_event_handlers_t xevenths)
+{

+ xcb_generic_event_t xevent;

+ while ((event = xcb_poll_for_event(evenths—>c)))
+ {

+ handle_event(evenths , event);

+ free (event) ;

+ }

+1}

+

static void set_handler(xcb_generic_event_handler_t handler, void =
data, xcb_event_handler_t xplace)
{
xcb_event_handler_t eventh = { handler, data };
diff —git a/event/xcb_event.h b/event/xcb_event.h
index deb7ba8..9122893 100644

XX1V

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

—— al/event/xcb_event.h

+++ b/event/xcb_event.h

@@ —14,7 +14,8 @@ xcb_event_handlers_t xxcb_alloc_event_handlers (
xcb_connection_t *c);

void xcb_free_event_handlers(xcb_event_handlers_t *xevenths);

xcb_connection_t xxcb_get_xcb_connection(xcb_event_handlers_t =
evenths) ;

—void xcb_event_loop(xcb_event_handlers_t xevenths);
+void xcb_wait_for_event_loop (xcb_event_handlers_t xevenths);
+void xcb_poll_for_event_loop(xcb_event_handlers_t xevenths);

typedef int (xxcb_generic_event_handler_t)(void =xdata,
xcb_connection_t *c, Xxcb_generic_event_t xevent);
typedef int (xxcb_generic_error_handler_t)(void xdata,
xcb_connection_t xc, Xxcb_generic_error_t xerror);
diff —git a/wm/xcbwm—test.c b/wm/xcbwm—test.c
index 4d8be5d..c928d7a 100644
—— a/wm/xcbwm—test.c
+++ b/wm/xcbwm—test .c
@@ —205,7 +205,7 @@ int main(int argc, char sxxargv)

if (TEST_THREADS)
{
— pthread_create(&event_thread , 0, (void *(x)(void x))
xcb_event_loop, evenths);
+ pthread_create(&event_thread , 0, (void *(x)(void x))
xcb_wait_for_event_loop, evenths);

}

root = xcb_aux_get_screen(c, screen_nbr)—>root;
@@ —223,7 +223,7 @@ int main(int argc, char sxargv)
if (TEST_THREADS)
pthread_join(event_thread , 0);

else

— xcb_event_loop (evenths);

+ xcb_wait_for_event_loop(evenths);
exit (0);
/ * NOTREACHED * /

Listing B.6: [PATCH] Add non-blocking events loop

B.2.2 Fix invalid data returned by ICCCM hints functions

commit €80aa98cc302e69025493631ffe03fc3f0516c8e
Author: Arnaud Fontaine <arnau@debian.org>
Date: Sun Mar 25 23:16:04 2008 +0100

Fix invalid value returned by xcb_get_wm_hints () and
xcb_get_size_hints () and also make this API consistent. Both now
returns a pointer on hints structures newly allocated and freed
via specific destructors.

XXV

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

diff —git a/icccm/icccm.c b/icccm/iccem.c
index cf22a25..aa347al 100644
—— al/icccm/iccecm. ¢
+++ b/icccm/icccm.c
@@ —515,45 +515,46 @@ xcb_set_wm_size_hints (xcb_connection_t x*c,
xcb_change_property (¢, XCB_PROP_MODE_REPLACE, window, property
, WM_SIZE_HINTS, 32, sizeof(xhints) / 4, hints);
}

—int

+xcb_size hints_t x
xcb_get_wm_size_hints (xcb_connection_t x*c,

xcb_window_t window ,
xcb_atom_t property ,
— xcb_size_hints_t xhints ,
long xsupplied)
{
xcb_get_property_cookie_t cookie;
— xcb_get_property_reply_t =xrep;
+ xcb_get_property_reply_t xrep;
+ xcb_size hints _t xhints = NULL;
+ long length ;
cookie = xcb_get_property (c, 0, window,
property , WM_SIZE_HINTS,
OL, 18); /x NumPropSizeElements = 18
(ICCCM version 1) x*/
rep = xcb_get_property_reply (c, cookie, 0);
if (!rep)
— return 0;
+ return NULL;
+ length = xcb_get_property_value_length (rep);
if ((rep—>type == WM_SIZE_HINTS) &&
((rep—>format == 8) [
(rep—>format == 16) Il
(rep—>format == 32)) &&
— (rep—>value_len >= 15)) /% OldNumPropSizeElements = 15 (
pre -ICCCM) =/
+ (length >= 15)) /+* OldNumPropSizeElements = 15 (pre—ICCCM)
*/
{
= char xprop;
= long length;
+ hints = xcb_alloc_size_hints () ;
+ if (!hints)
+ {
+ free (rep);
+ return NULL;
+ }

— length = xcb_get_property_value_length (rep);

= /+ FIXME: in GetProp.c of xcl, one move the memory.
— * Should we do that too ? x/

= prop = (char x)malloc(sizeof(char)xlength);

— memcpy (prop, xcb_get_property_value (rep), length);

XX Vi

63

65

67

69

71

73

75

771

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

= prop[length] = *\0’;
— hints = (xcb_size_hints_t x)strdup (prop);

+ memcpy (hints, (xcb_size_hints_t x)
xcb_get_property_value (rep),
+ length % rep—>format >> 3);
xsupplied = (USPosition | USSize I
PPosition | PSize |
PMinSize | PMaxSize |
PResizelnc | PAspect);
— if (rep—>value_len >= 18) /* NumPropSizeElements = 18

(ICCCM version 1) x/
+ if (length >= 18) /* NumPropSizeElements = 18 (ICCCM
version 1) x/

*supplied |= (PBaseSize | PWinGravity);
else
{
@@ —562,16 +563,11 @@ xcb_get_wm_size_hints (xcb_connection_t xc,
hints —>win_gravity = 0;
}
hints —>flags &= (xsupplied); /+ get rid of unwanted
bits x/
— free (rep);
— return 1;
}
— hints = NULL;
free (rep);
— return O;
+ return hints ;

}

/* WM_NORMAL HINTS =x/
@@ —592,13 +588,12 @@ xcb_set_wm_normal_hints (xcb_connection_t xc,
xcb_set_wm_size_hints (¢, window, WM_NORMAL HINTS, hints);
}

—int
+xcb_size_ _hints_t
xcb_get_wm_normal_hints (xcb_connection_t x*c,

xcb_window_t window ,
— xcb_size_hints_t xhints ,
long xsupplied)
{
— return (xcb_get_wm_size_hints (c, window, WM _NORMAL_HINTS,
hints , supplied));
+ return (xcb_get_wm_size_hints (c, window, WM_NORMAL_HINTS,
supplied));
}

/* WM_HINTS x/
@@ —638,6 +633,12 @@ xcb_alloc_wm_hints ()
return calloc (1, sizeof(xcb_wm_hints_t));

XX Vil

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

163

165

}

+void
+xcb_free_wm_hints (xcb_wm_hints_t xhints)
+{
+ free (hints);
+)
+
uint8 _t
xcb_wm_hints_get_input(xcb_wm_hints_t xhints)
{
@@ —826,7 +827,6 @@ xcb_get_wm_hints (xcb_connection_t xc,
xcb_get_property_cookie_t cookie;
xcb_get_property_reply_t xrep;

xcb_wm_hints t xhints ;
— char *prop;
long length;
cookie = xcb_get_property (c, 0, window,
@@ —836,25 +836,24 @@ xcb_get_wm_hints (xcb_connection_t =xc,
if (lrep)
return NULL;
+ length = xcb_get_property_value_length (rep);

if ((rep—>type != WM_HINTS) II
— (rep—>value_len < (XCB_NUM_WM_HINTS ELEMENTS — 1)) Il
+ (length < (XCB_NUM_WM_HINTS_ELEMENTS — 1)) Il
(rep—>format != 32))

free (rep);
return NULL;
}
— hints = (xcb_wm_hints_t x)calloc (1, (unsigned)sizeof (
xcb_wm_hints_t));
+ hints = xcb_alloc_wm_hints () ;
if (!hints)
{
free (rep);
return NULL;

}

— length = xcb_get_property_value_length (rep);
= prop = (char %) xcb_get_property_value (rep);
= prop[length] = °\0’;

— hints = (xcb_wm_hints_t x)strdup (prop);

— if (rep—>value_len < XCB_NUM_WM_HINTS_ELEMENTS)

+ memcpy (hints , (xcb_size_hints_t x) xcb_get_property_value
)

+ length % rep—>format >> 3);

+ if (length < XCB_NUM_WM_HINTS_ELEMENTS)

hints —>window_group = XCB_NONE;

return hints;
diff —git a/icccm/xcb_iccecm.h b/iccem/xcb_iccem . h
index eafc71b..d7b42a9 100644
—— a/iccem/xcb_iccecm . h

XXViil

(rep

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

+++ b/icccm/xcb_icccm . h
@@ —-190,10 +190,9 @@ void xcb_set_wm_size_hints (
xcb_connection_t *C
xcb_atom _t
property ,
xcb_size_ _hints_t xhints

)

—int xcb_get_wm_size_hints (xcb_connection_t *C,
+xcb_size_hints_t xxcb_get_wm_size_hints (xcb_connection_t *C,
xcb_window _t
window ,
xcb_atom_t
property ,
— xcb_size hints_t +*hints

long *
supplied);

/* WM_NORMAL HINTS =x/
@@ —206,10 +205,9 @@ void xcb_set_wm_normal_hints (xcb_connection_t x*c
xcb_window_t window ,
xcb_size_hints_t xhints);

—int xcb_get_wm_normal_hints (xcb_connection_t x*c,

— xcb_window _t window ,

— xcb_size_hints_t xhints ,

— long xsupplied);
+xcb_size_hints_t sxcb_get_wm_normal_hints (xcb_connection_t xc,

+ xcb_window _t window ,

+ long xsupplied)

/* WM_HINTS x/

@@ —223,6 +221,7 @@ typedef enum {
} xcb_wm_state_t;

xcb_wm_hints_t xxcb_alloc_wm_hints () ;
+void xcb_free_wm_hints (xcb_wm_hints_t xhints);

uint8 _t xcb_wm_hints_get_input (xcb_wm_hints_t xhints);
xcb_pixmap_t xcb_wm_hints_get_icon_pixmap (xcb_wm_hints_t xhints);

Listing B.7: [PATCH] Fix invalid data returned by ICCCM hints functions

B.2.3 Add non-blocking events loop

commit 66728b2d13f3eee94230038c8f8eb236c20b9525
Author: Arnaud Fontaine <arnaud@andesi.org>
Date : Mon Jan 28 14:26:05 2008 —0800

Add xcb_poll_for_event_loop and rename xcb_event_loop to match.

XX1X

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

I’'m currently porting Awesome[0] from Xlib to XCB as a school
project for

my bachelor. I discussed with Vincent about adding a non—blocking

xcb_event_loop on IRC because I had to write one for Awesome and
wondered

if this kind of function could be added to xcb—util.

[0] http ://awesome.naquadah.org
Signed—off —by: Jamey Sharp <jamey@minilop.net>

diff —git a/event/events.c b/event/events.c
index 2900bd3..354346a 100644
—— a/event/events.c
+++ b/event/events.c
@@ —62,7 +62,7 @@ static int handle_event(xcb_event_handlers_t x
evenths , xcb_generic_event_t xeven
return 0;

}

—void xcb_event_loop(xcb_event_handlers_t xevenths)

+void xcb_wait_for_event_loop(xcb_event_handlers_t xevenths)

{
xcb_generic_event_t xevent;
while ((event = xcb_wait_for_event(evenths—>c)))

@@ —72,6 +72,16 @@ void xcb_event_loop(xcb_event_handlers_t xevenths)
}

}

+void xcb_poll_for_event_loop(xcb_event_handlers_t xevenths)
+{

+ xcb_generic_event_t xevent;

+ while ((event = xcb_poll_for_event(evenths—>c)))
+ {

+ handle_event(evenths , event);

+ free (event) ;

+ }

+}

+

static void set_handler(xcb_generic_event_handler_t handler, void x
data, xcb_event_handler_t xplace)

{

xcb_event_handler_t eventh = { handler, data };

diff —git a/event/xcb_event.h b/event/xcb_event.h

index deb7ba8..9122893 100644

—— al/event/xcb_event.h

+++ b/event/xcb_event.h

@@ —14,7 +14,8 @@ xcb_event_handlers_t *xxcb_alloc_event_handlers (
Xxcb_connection_t *c);

void xcb_free_event_handlers (xcb_event_handlers_t xevenths);

xcb_connection_t sxxcb_get_xcb_connection(xcb_event_handlers_t =
evenths) ;

—void xcb_event_loop(xcb_event_handlers_t xevenths);
+void xcb_wait_for_event_loop (xcb_event_handlers_t xevenths);

XXX

56

58

60

62

64

66

68

70

72

74

76

78

80

+void xcb_poll_for_event_loop(xcb_event_handlers_t xevenths);

typedef int (xxcb_generic_event_handler_t)(void =xdata,
xcb_connection_t *c, xcb_generic_event_t xevent);
typedef int (xxcb_generic_error_handler_t)(void xdata,
xcb_connection_t xc, xcb_generic_error_t xerror);
diff —git a/wm/xcbwm—test.c b/wm/xcbwm—test.c
index 4d8be5d..c928d7a 100644
—— a/wm/xcbwm—test.c
+++ b/wm/xcbwm—test .c
@@ —205,7 +205,7 @@ int main(int argc, char sxargv)

if (TEST_THREADS)
{
— pthread_create(&event_thread , 0, (void *(x)(void x))
xcb_event_loop , evenths);

+ pthread_create(&event_thread , 0, (void *(x)(void x))
xcb_wait_for_event_loop, evenths);
}
root = xcb_aux_get_screen(c, screen_nbr)—>root;

@@ —223,7 +223,7 @@ int main(int argc, char sxxargv)
if (TEST_THREADS)
pthread_join(event_thread , 0);

else

— xcb_event_loop (evenths);

+ xcb_wait_for_event_loop(evenths);
exit (0);
/ +* NOTREACHED * /

Listing B.8: [PATCH] Add non-blocking events loop

XXX1

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another language.

XXXi11

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical con-
nection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this def-
inition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by

XXX1i1

reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

XXX1V

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. Liston the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

XXXV

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a

XXXV1

single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the compi-
lation’s users beyond what the individual works permit. When the Document is included in an
aggregate, this License does not apply to the other works in the aggregate which are not them-
selves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the trans-
lation and the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is
void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of
the violation by some reasonable means prior to 60 days after the cessation.

XXX Vil

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to
it, you have the option of following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody to
edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your
documents

XXXViil

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

XXX1X

